必读网 - 人生必读的书

TXT下载此书 | 书籍信息


(双击鼠标开启屏幕滚动,鼠标上下控制速度) 返回首页
选择背景色:
浏览字体:[ ]  
字体颜色: 双击鼠标滚屏: (1最慢,10最快)

《植物学》(上)

_5 徐汉卿(现代)
  子房原是由薄壁细胞所构成,在发育成果实时,将进一步分化为各种不同的组织,分化的性质随植物种类而异,这是果实分类的依据。
  组成果实的组织,称为果皮(pericarp),通常可分为三层结构,最外层是外果皮(exocarp),中层是中果皮(mesocarp),内层是内果皮(endocarp)。三层果皮的厚度不是一致的,视果实种类而异。有些果实里,三层果皮分界比较明显,如肉果中的核果类;也有分界不甚明确,甚至互相混合,无从区别的。果皮的发育是一个十分复杂的过程,常常不能单纯地和子房壁的内、中、外层组织对应起来,而且组成三层果皮的组织层,常在发育过程中出现分化,使追索它们的起源更显得困难。
  严格地说,果皮是指成熟的子房壁,如果果实的组成部分,除心皮外,尚包含其他附属结构组织的,如花托等,则果皮的含义也可扩大到非子房壁的附属结构或组织部分。
  2.单性结实和无子果实果实的形成,一般与受精作用有密切关系,但也有不经受精,子房就发育成果实的,像这样形成果实的过程称单性结实(parthenocarpy)。单性结实的果实里不含种子,所以称这类果实为无子果实。
  单性结实有自发形成的,称为自发单性结实(autonomous parthenocarpy),突出的例子如香蕉。香蕉的花序是穗状花序,花序总轴上部是雄花,下部是雌花,雌花可不经传粉、受精而形成果实。其他在自然条件下能进行单性结实的有葡萄的某些品种、柑橘、柿、瓜类等,这些栽培植物的果实中不含种子,品质优良,是园艺上的优良栽培品种;另一种情况是通过某种诱导作用以引起单性结实,称诱导单性结实(induced parthenocarpy),例如用马铃薯的花粉刺激番茄的柱头,或用爬山虎的花粉刺激葡萄的柱头,都能得到无子果实。又如利用各种生长刺激素涂敷或喷洒在柱头上,也能得到无子果实。近年来常用2,4-D、吲哚乙酸等类生长素,在瓜类和番茄上诱导单性结实,取得良好效果。
  (二)果实的类型
  果实的类型可以从不同方面来划分。果实的果皮单纯由子房壁发育而成的,称为真果(true fruit),多数植物的果实是这一情况。除子房外,还有其他部分参与果实组成的,如花被、花托以至花序轴,这类果实称为假果(spurious fruit,false fruit),如苹果,瓜类、凤梨等。
  另外,一朵花中如果只有一枚雌蕊,以后只形成一个果实的,称为单果(simple fruit)。如果一朵花中有许多离生雌蕊,以后每一雌蕊形成一个小果,相聚在同一花托之上,称为聚合果(aggregate fruit),如莲、草莓、悬钩子等(图4-65)。如果果实是由整个花序发育而来,花序也参与果实的组成部分,这就称为聚花果(collective fruit)或称花序果,也称复果(multiplefruit),如桑、凤梨、无花果等(图4-66)。
  如果按果皮的性质来划分,有肥厚肉质的,称肉果(fleshy fruit);也有果实成熟后,果皮干燥无汁的,称干果(dry fruit)。肉果和干果又各区分若干类型。
 
  1.肉果特征是果皮肉质化,往往肥厚多汁,在成熟过程中常出现一系列生理变化,如:糖类由淀粉转化成可溶性糖;有机酸氧化变成糖类;单宁也氧化或成为不溶状态,从而增加了果实的甜味,减少酸味和涩味;质体中的叶绿素破坏,细胞液出现花青素,使果实的颜色有所转变;果肉细胞中产生某些挥发性脂类物质,使果实变香;果肉细胞的胞间层由于果胶酶的作用而溶解,使果肉软化,成为色、香、味三者兼备的可食用部分。肉果又可按果皮来源和性质不同而分为以下几类。
  (1)浆果(berry)浆果是肉果中最为习见的一类,由一个或几个心皮形成的果实,果皮除表面几层细胞外,一般柔嫩,肉质而多汁,内含多数种子,如葡萄、番茄、柿等。番茄果实的肉质食用部分,主要是由发达的胎座发展而成(图4-67)。
   
  葫芦科植物的果实,如多种瓜类,是浆果的另一种,一般称为瓠果(pepo)。果实的肉质部分是子房和花托共同发育而成的,所以属于假果。南瓜、冬瓜的食用部分,主要是他们的果皮,而西瓜的食用部分是原来的胎座。
  柑橘类的果实也是一种浆果,称橙果或柑果(hesperidium),是由多心皮具中轴胎座的子房发育而成。它的外果皮坚韧革质,有很多油囊分布。中果皮疏松髓质,有维管束分布其间,干燥果皮内的“橘络”就是这些维管束。内果皮膜质,分为若干室,室内充满含汁的长形丝状细胞,由原来子房内壁的毛茸发育而成,是这类果实的食用部分,如常见的柑橘、柚、柠檬等(图4-68)。
  (2)核果(drupe)通常由单雌蕊发展而成,内含一枚种子,三层果皮性质不一,外果皮极薄,由子房表皮和表皮下几层细胞组成;中果皮是发达的肉质食用部分;内果皮的细胞经木质化后,成为坚硬的核,包在种子外面,这种果实称为核果(图4-69),如桃、梅、李、杏等的果实。也有成熟的核果中果皮干燥无汁的,如椰子。椰子的中果皮成纤维状,俗称椰棕,内果皮即为椰壳。
 
  (3)梨果(pome)这类果实多为具子房下位花的植物所有。果实由花筒和心皮部分愈合后共同形成,所以是一类假果。外面很厚的肉质部分是原来的花筒,肉质部分以内才是果皮部分。外果皮和花筒,以及外果皮和中果皮之间,均无明显界限可分。内果皮由木质化的厚壁细胞所组成,所以比较清楚明显。梨、苹果等是这类果实的典型代表(图4-70)。
  2.干果果实成熟以后,果皮干燥,有的果皮能自行开裂,为裂果;也有即使果实成熟,果皮仍闭合不开裂的,为闭果。根据心皮结构的不同,又可区分为如下几种类型。
  (1)裂果类(dehiscentfruit)果实成熟后果皮自行裂开,可分为以下几种类型:
  ①荚果(legume)荚果是单心皮发育而成的果实,成熟后,果皮沿背缝和腹缝两面开裂,如大豆、豌豆、蚕豆等;有的虽具荚果形式,但并不开裂,如落花生、合欢、皂荚等;也有的荚果呈分节状,成熟后也不开裂,而是节节脱落,每节含种子一粒,这类荚果,称为节荚,如决明、含羞草、山蚂蝗等;有的荚果螺旋状,外有刺毛,如苜蓿的果实,或圆柱形分节,作念珠状,如槐的果实(图4-71)。
  ②蓇葖果(follicle)蓇葖果是由单心皮或离生心皮发育而成的果实,成熟后只由一面开裂。有沿心皮腹缝开裂的,如梧桐、牡丹、芍药、八角茴香等的果实。也有沿背缝开裂的,如木兰、白玉兰等(图4-72)。
  
  ③蒴果(capsule)蒴果是由合生心皮的复雌蕊发育而成的果实,子房有一室的,也有多室的,每室含种子多粒。这类果实较为普遍,成熟时按三种方式开裂:(1)纵裂(longitudinaldehiscence),裂缝沿心皮纵轴方向分开,又可分为:室间开裂(septicidaldehiscence),即沿心皮腹缝相接处裂开,开裂时由二相邻心皮组合的子房隔膜同时分开,如秋水仙、马兜铃、薯蓣等;室背开裂(loculicidaldehiscence),沿心皮背缝处开裂,如鸢尾、草棉、酢浆草、紫花地丁等;室轴开裂(septifragaldehiscence),即果皮虽沿室间或室背开裂,但子房隔膜与中轴仍相连,如牵牛、鸢萝、曼陀罗等。(2)孔裂(porousdehiscence),果实成熟后,各心皮并不分离,而在子房各室上方裂成小孔,种子由孔口散出,如罂粟、金鱼草、桔梗等。(3)周裂(circumscissiledehi-scence),合生心皮一室的复雌蕊组成,心皮成熟后沿果实的上部或中部作横裂,果实成盖状开裂,如樱草、马齿苋、车前等(图4-73),也称盖果(pyxis)。
  
  ④角果角果是由2心皮组成的雌蕊发育而成的果实。子房1室,后来由心皮边缘合生处向中央生出隔膜,将子房分隔成2室,这一隔膜,称为假隔膜。果实成熟后,果皮由基部向上沿2腹缝裂开,成2片脱落,只留假隔膜,种子附于假隔膜上。十字花科植物多具这类果实。角果有细长的,长超过宽好多倍,称为长角果(silique),如芸苔、萝卜、甘蓝等;另有一些短形的,长宽之比几相等,称为短角果(silicle),如荠菜、遏蓝菜等(图4-74)。
   
  (2)闭果类(indehiscentfruit)果实成熟后,果皮仍不开裂,可分为以下几种类型:
  ①瘦果(achene)由1—3心皮构成的小型闭果;果皮坚硬,果内含1枚种子,成熟时果皮与种皮仅在一处相连,易于分离。如白头翁(1心皮构成),向日葵、蒲公英(2心皮构成)、荞麦(3心皮构成)(图4-75,A)等。
  ②颖果(caryopsis)颖果的果皮薄,革质,只含一粒种子,果皮与种皮紧密愈合不易分离。果实小,一般易误认为种子,是水稻、小麦、玉米等禾本科植物的特有果实类型(图4-75,B)。
  ③翅果(samara)翅果的果实本身属瘦果性质,但果皮延展成翅状,有利于随风飘飞,如榆、槭、臭椿等植物的果实(图4-75,C、D)。
  ④坚果(nut)坚果是外果皮坚硬木质,含一粒种子的果实。成熟果实多附有原花序的总苞,称为壳斗,如栎、榛和栗等果实。通常一个花序中仅有一个果实成熟,也有同时有二三个果实成熟的,如栗,包在它们外面带刺的壳(常三四粒包在共同的壳内),是由花序总苞发育而成(图4-75,E)。
  ⑤双悬果(cremocarp)双悬果是由2心皮的子房发育而成的果实。伞形科植物的果实,多属这一类型。成熟后心皮分离成两瓣,并列悬挂在中央果柄的上端,种子仍包于心皮中,以后脱离。果皮干燥,不开裂,如胡萝卜、小茴香的果实。
  ⑥胞果(utricle)亦称“囊果”,是由合生心皮形成的一类果实,具1枚种子,成熟时干燥而不开裂。果皮薄,疏松地包围种子,极易与种子分离,如藜、滨藜、地肤等的果实。
三、果实和种子对传播的适应
  被子植物用以繁殖的特有结构——种子,是包在果实里受果实保护的,同时,果实的结构也有助于种子的散布。果实和种子散布各地,扩大后代植株的生长范围,与繁荣种族是有利的,也为丰富植物的适应性提供条件。
  果实和种子的散布,主要依靠风力、水力、动物和人类的携带,以及通过果实本身所产生的机械力量。果实和种子对于各种散布力量的适应形式是不一样的,现分别叙述于下。
  (一)对风力散布的适应
  多种植物的果实和种子是借助风力散布的,它们一般细小质轻,能悬浮在空气中为风力吹送到远处,如兰科植物的种子小而轻,可随风吹送到数公里以外的范围内分布;其次是果实或种子的表面常生有絮毛、果翅,或其他有助于承受风力飞翔的特殊构造。如棉、柳的种子外面都有细长的绒毛(棉絮和柳絮),蒲公英果实上长有降落伞状的冠毛,白头翁果实上带有宿存的羽状柱头,槭、榆等的果实以及松、云杉等种子的一部分果皮和种皮铺展成翅状,又如酸浆属(Physalis)的果实有薄膜状的气囊,这些都是适于风力吹送的特有结构(图 4-76)。在草原和荒漠上的风滚草(tumble weed),种子成熟时,球形的植株在根颈部断离,随风吹滚,分布到较远的场所,还有猪毛菜属(Salsola)、丝石竹属(Gypsophila)等。
  
  (二)对水力散布的适应
  水生和沼泽地生长的植物,果实和种子往往借水力传送。莲的果实,俗称莲蓬,呈倒圆锥形,组织疏松,质轻,飘浮水面,随水流到各处,同时把种子远布各地(图4-77)。陆生植物中的椰子,它的果实也是靠水力散布的。椰果的中果皮疏松,富有纤维,适应在水中飘浮;内果皮又极坚厚,可防止水分侵蚀;果实内含大量椰汁,可以使胚发育,这就使椰果能在咸水的环境条件下萌发。热带海岸地带多椰林分布,与果实的散布是有一定关系的。
 
  (三)对动物和人类散布的适应
  一部分植物的果实和种子是靠动物和人类的携带散布开的,这类果实和种子的外面生有刺毛、倒钩或有粘液分泌,能挂在或粘附于动物的毛、羽,或人们的衣裤上,随着动物和人们的活动无意中把它们散布到较远的地方,如窃衣、鬼针草、苍耳、蒺藜、猪殃殃(图4-78)和丹参、独行草等。
  果实中的坚果,常是某些动物的食料,特别如松鼠,常把这类果实搬运开去,埋藏地下,除一部分被吃掉外,留存的就在原地自行萌发。又如蚂蚁对一些小型植物的种子,也有类似的传播方式。
  至于果实中的肉果类,多半是鸟兽动物喜欢的食料,这些果实被吞食后,果皮部分被消化吸收,残留的种子,由于坚韧种皮的保护,不经消化即随鸟兽的粪便排出,散落各处,如果条件适合,便能萌发。同样,多种植物的果实也是人类日常生活中的辅助食品,在取食时往往把种子随处抛弃,种子借此取得了广为散布的机会。
  (四)靠果实本身的机械力量使种子散布的适应结构
  有些植物的果实在急剧开裂时,产生机械力或喷射力量,使种子散布开去。干果中的裂果类,果皮成熟后成为干燥坚硬的结构,由于果皮各层厚壁细胞的排列形式不一,随着果皮含水量的变化,容易在收缩时产生扭裂现象,借此把种子弹出,分散远处。常见的大豆、蚕豆、凤仙花等果实有此现象,所以大豆、油菜等经济植物的果实,成熟后必须及时收获,不然,干燥后自行开裂,把种子散布在田间,遭受损失。喷瓜的果实成熟时,在顶端形成一个裂孔,当果实收缩时,可将种子喷到远处(图4-79)。
第七节 植物的生活史
  多数植物在经过一个时期的营养生长以后,便进入生殖阶段,这时在植物体的一定部位形成生殖结构,产生生殖细胞进行繁殖。如属有性生殖,则形成配子体,产生卵和精子,融合后形成合子,然后发育成新的一代植物体。像这样,植物在一生中所经历的发育和繁殖阶段,前后相继,有规律地循环的全部过程,称为生活史(lifehistory)或生活周期(life ycle)。
  被子植物的生活史,一般可以从一粒种子开始。种子在形成以后,经过一个短暂的休眠期,在获得适合的内在和外界环境条件时,便萌发为幼苗,并逐渐长成具根、茎、叶的植物体。经过一个时期的生长发育以后,一部分顶芽或腋芽不再发育为枝条,而是转变为花芽,形成花朵,由雄蕊的花药里生成花粉粒,雌蕊子房的胚珠内形成胚囊。花粉粒和胚囊又各自分别产生雄性精子和雌性的卵细胞。经过传粉、受精,1个精子和卵细胞融合,成为合子,以后发育成种子的胚;另1个精子和2个极核结合,发育为种子中的胚乳。最后花的子房发育为果实,胚珠发育为种子。种子中孕育的胚是新生一代的雏体。因此,一般把“从种子到种子”这一全部历程,称为被子植物的生活史或生活周期。被子植物生活史的突出特点在于双受精这一过程,是其他植物所没有的。
  被子植物的生活史存在着两个基本阶段:一个是二倍体植物阶段(2n),一般称之为孢子体阶段,这就是具根、茎、叶的营养体植株。这一阶段是从受精卵发育开始,一直延续到花里的雌雄蕊分别形成胚囊母细胞(大孢子母细胞)和花粉母细胞(小孢子母细胞)进行减数分裂前为止,在整个被子植物的生活周期中,占了绝大部分的时间。这一阶段植物体的各部分细胞染色体数都是二倍的。孢子体阶段也是植物体的无性阶段,所以也称为无性世代;另一个是单倍体植物阶段(n),一般可称为配子体阶段,或有性世代。这就是由大孢子母细胞经过减数分裂后,形成的单核期胚囊(大孢子),和小孢子母细胞经过减数分裂后,形成的单核期花粉细胞(小孢子)开始,一直到胚囊发育成含卵细胞的成熟胚囊,和花粉成为含2个(或3个)细胞的成熟花粉粒,经萌发形成有两个精子的花粉管,到双受精过程为止。被子植物的这一阶段占有生活史中的极短时期,而且不能脱离二倍体植物体而生存。由精卵融合生成合子,使染色体又恢复到二倍数,生活周期重新进入到二倍体阶段,完成了一个生活周期。被子植物生活史中的两个阶段,二倍体占整个生活史的优势,单倍体只是附属在二倍体上生存,这是被子植物和裸子植物生活史的共同特点。但被子植物的配子体比裸子植物的更加退化,而孢子体更为复杂。二倍体的孢子体阶段(或无性世代)和单倍体的配子体阶段(或有性世代),在生活史中有规则地交替出现的现象,称为世代交替(alternationofgeneration)。
  被子植物世代交替中出现的减数分裂和受精作用(精卵融合),是整个生活史的关键,也是两个世代交替的转折点,必须予以重视。被子植物世代交替的模式图和简单的世代交替图解,见图4-80。
复习思考题
  1.植物的繁殖具有哪些重要的生物学意义?植物的繁殖可分为哪几种类型?各种繁殖类型的特点是什么?
  2.什么是自然营养繁殖?举各种自然营养繁殖的实例加以说明。
  3.什么是人工营养繁殖?在生产上适用的人工营养繁殖有哪几种?人工营养繁殖在生产上的特殊意义是什么?
  4.扦插和压条繁殖时需注意哪些重要的环节?二者的具体操作有何不同?
  5.嫁接繁殖和扦插、压条有何不同?何以嫁接繁殖优于扦插和压条繁殖?
  6.嫁接繁殖的成功关键是什么?具体的操作方法有哪几种?
  7.花是怎样发生的?植物由营养生长转入生殖生长将在植株上发生怎样的显著变化?
  8.典型的花分哪些主要部分?各部分的形态和结构如何?
  9.花被在不同植物种类里的变化情况如何?什么是同被花、单被花、两被花和无被花?举例说明。
  10.花被和花蕊的离、合情况如何?
  11.在植物系统演化过程中,花的各组成部分是随着怎样的演化趋势而变化的?这些变化是否是同步发展的?举例说明。
  12.花托的形态变化如何使子房和花的其他组成部分的位置也相应地引起变化?由此而引起的不同子房位置的花的名称是什么?
  13.说明一朵小麦花的结构。
  14.花园式和花程式的含义是什么?如何绘制花图式和写一个花程式?举例说明。
  15.什么是花序?两大类花序的主要区别是什么?举例说明各类花序的重要特征。
  16.花药壁的发育过程如何?药壁中的绒毡层在小孢子形成过程中起着什么重要的作用?
  17.由孢原细胞发育为小孢子的过程如何?成熟花粉的一般结构如何?
  18.什么是花粉败育和雄性不育?产生这两种现象的原因是什么?
  19.胚珠的发育过程如何?有哪几种类型?
  20.什么是胎座?如何识别各种胎座类型?
  21.单胞型、双胞型和四胞型的胚囊发生是如何形成的?
  22.单胞8核、7细胞胚囊的发育过程是怎样的? 7细胞胚囊各细胞的名称和作用如何?
  23.什么是自花传粉和异花传粉?异花传粉比自花传粉在后代的发育过程中更有优越性,原因是什么?植物如何在花部的形态结构或开花方式方面避免自花传粉的发生?自花传粉能在自然界被保留下来的原因又是什么?
  24.各种不同传粉方式花的形态结构特征如何?
  25.被子植物的双受精过程及其意义。
  26.花粉在柱头上的萌发,为什么会出现亲和和不亲和的现象?从细胞组织学的角度看,亲和或不亲和的原因是什么?
  27.什么是无融合生殖和多胚现象?
  28.荠菜和小麦胚的发育过程如何?二者间有何异同点?
  29.三种胚乳发育类型的详细过程如何?
  30.种皮的结构特征如何?种皮的性质、厚薄与果实的果皮之间是否有一定的相关性?
  31.什么是单性结实?自发和诱导单性结实在生产上有何重要意义?
  32.列举各类果实的结构特征。
  33.种子和果实的传布有哪些方式?
  34.理顺被子植物的生活史。用表列出生活史中各个阶段的发展顺序,包括大、小孢子囊的发生,大、小孢子的形成,雌、雄配子体的发生,雌、雄配子的形成,受精过程,由受精后产生的果实和新一代的雏体。注明各阶段的核相变化。
首页 上一页 共5页
返回书籍页