必读网 - 人生必读的书

TXT下载此书 | 书籍信息


(双击鼠标开启屏幕滚动,鼠标上下控制速度) 返回首页
选择背景色:
浏览字体:[ ]  
字体颜色: 双击鼠标滚屏: (1最慢,10最快)

复杂性中的思维

_3 克劳斯.迈因策尔(德)
专家系统的最后一个也是最重要的问题是哲学问题。如何将专家系统的专业知识库与关于世界的一般化结构化的知识结合起来?这种一般化结构化的知识会影响人的专家的决策和行动。
因此,当医生作出进行手术的决策时,还将考虑到有关病人的生活条件(家庭、工作等)的非对象性以及他对于生命的态度。特别是,例如在当今有关死亡尊严的争论中,对于生和死这种基本问题;医生的总体态度和见识也是融入到他的决策中的,尽管立法上在寻求建立一般的行为标准,但对此却是难以进行规范的。例如,在法律的专家系统中也表现出同样的问题。法官会置规范系统的自治性于不顾,最终将发现某种可能决策的正式范围,在此他将倾向于他自己关于生命和世界的观点。对于这种主观性影响,不要抱怨缺乏客观性,而是要看作一种作出更为人道的医学和裁决的机会。不过,对此并没有排除,未来的计算机科学应该去进一步地扩展以专家系统为基础知识,这种知识今天还是非常专业化的。当然,根本性的局限也是明显的,是专家系统的本质所导致。
专家系统是问题求解程序的技术实现。因此,实际上存在着的专家系统可以由特定的要解决的问题来进行分类。图5.8示意了专家系统最重要问题的类型。
输入问题类型输出
测量数据、症状等→分类或诊断→规则/模式的识别
约束→设计→满足性质的对象
初始态、目标态→计划→将初始态转变到目标态的行动顺序
初始态→模拟→未来的后果状态
图5.8专家系统的问题类型
一类已经深入分析过的问题涉及到“诊断”,例如医学中的诊断。这种专家系统的输入由测量的数据、症状等等所构成,它在结果中提供了从数据规则中识别出来的模式。另一类问题涉及到“设计”。此问题是如何发现在相应约束下的产物。计划问题的解答要求某种行动序列,把初始态转变成目标态。模拟问题从模型的初始态出发,必须计算其后续状态并进行评价。
问题求解策略是由产生规则推导出来的,这里必须由所谓的规则解释者进行选取。如果有几种规则是可用的,冲突求解策略将决定哪一条规则是适用的。例如,可能的规则可以用优先性和一般性的程度整理出次序。然后,选取具有最高程度的优先性或专业性的规则就可能是合适的。
在推理中的规则组合可以由所谓前向和后向链接来实现。前向链接从一定的数据和事实A出发,运用此演绎机制直至推导出一定的目标D(图5.9)。
从方法论的观点看,专家系统的前向和后向链接程序,只不过是众所周知的古典逻辑学家和哲学家帕波斯的发现确证的必要性或充足理由的方法。不足为奇的是,几乎所有专家系统的推理策略都是以众所周知的哲学方法论为基础的。
今天,AI中运用的大多数哲学理论都不是直接从哲学文献中获取来的,但是这无损于它们的哲学意义。然而,有一些著名专家系统的作者却是直接受到了哲学家的影响。
要弄明白AI是哲学逻辑和方法论,人们只要仔细考虑一些专家系统。它们的问题分类决定了何种策略适合于问题求解。一般地说,一种策略的目的也就是减少问题的复杂性。
DENDRAL程序所涉及的任务,是从数据中决定出分子的结构,数据中包含着化合物的分子式和化合物的质谱。输出整理成有序的表格,列出各种可能的结构式。其问题求解的策略被称作“产生和检验”,其算法是产生出与给定的分子式一致的有机分子的拓扑结构,以及产生出分子中的化学键最可能从何处断裂的规则。简言之,我们可以说,该程序是采用尽早修剪掉坏的分枝的方法来减少求解生成树的复杂性。方法论上,它涉及某种确证标准。
一般地,如下的要点具有重要性,而不论其化学应用如何:
a)有某个形式对象的集合,其中包含了解答。
b)有某种产生机制,例如某种对于该集合的完整计数过程。
c)有某种检验,例如判断所鉴定出的某种产生出来的元素是否在解答集中。
这种一般方法由如下的算法来定义,例如由如下的遵从丘奇定理的递归函数来定义:
函数GENERATE-AND-TEST(SET):
如果要检验的集合SET为空,
那么失败,
否则让ELEM是SET的“如下”元素;
如果ELEM是目标元素,
那么将其作为解答,否则对于集合SET在没有元素ELEM情况下重复这一函数。
对于翻译成AI编程语言LISP,必须引入一些递归辅助函数,例如GENERATE(产生一定集合的某个元素),GOALP(是判断函数,如果论据是解答集的一部分则提供T(真),否则NIL),SOLUTION(为“输出”准备的解答元素),和REMOVE(提供集合减去给定元素)。当设计一张符号表时,考虑到LISP中通常的缩写,例如 DE(定义)、COND(条件)。EQ(方程)、T(真)以及LISP的约定(例如括号规则),如下的算法在LISP中是可接受的:(DE GENERATE-AND-TEST(SET)(COND((EQ SET NIL)’FAIL)
(T(LET(ELEM(GENERATE SET))
(COND((GOALP ELEM)(SOLUTION ELEM))
(T(GENERATE-AND-TEST
REMOVE ELEM SET)))))))
对于给定的化学分子式,所有的化学结构都系统地产生出来,例如对于C5H12,第一步是:
一些化学结构被排除了,因为它们是不稳定的或相矛盾的。下一步,计算出相应的质谱并与经验上确定的质谱进行比较。这个比较也就是检验过程。GENERAIE-AND-TEST从而在技术上实现了一种方法论,排除了不可能的假定并检验可能的变体。
META-DENDRAL程序是设计来改进DENDRAL程序的,涉及何种分子键将在质谱仪中被打破。所以META-DEN-DRAL运用了DENDRAL程序再加上确证的预测标准,这被亨佩尔批判地分析过。
帮助医生进行诊断感染的MYCIN程序,是一种后向链接的演绎系统。MYCIN的知识库中,大约有300种血液细菌感染生成方式。下面是一个典型例子:
如果感染的类型是基本的细菌血症,怀疑的入侵点是胃肠道,培养部位是一处无菌部位,那么这就表明此种有机体是拟肠杆菌。
运用这样的知识,MYCIN进行后向运行。对于所有100种诊断假设,MYCIN试图逼近从实验室结果和临床观察获得的基本事实。由于MYCIN工作在推论往往不确定的领域中,它的设计者把看来合情概率推理的理论与基本的产生装置结合起来。该理论用来为与/或(AND/OR)树中每一个结论建立起所谓的确定性因子(图5.10)。
这里,Fi是使用者指定给一事实的确定性因子,Ci表明一结论的确定性因子,Ai是产生规则所预期的可信度。确定性因子在AND节点和OR节点处指向前面的式子进行计算。如果一个确定性因子为0.2或更小,相应事实的真假被看作是未知的,就规定其值为0。
该程序计算出归纳合理性的大小取决于保证事实的多少。这种方式使我们想起鲁道夫·卡纳普的归纳理论。卡纳普自然是不相信培根的普遍归纳结论的。结论总是演绎性的。对此不需要波普尔式忠告,否则专家系统不会运行。然而,像MYCIN系统中所用的概率测量则使得该系统对于使用者更透明。
另一方面,也可以这样说,在此采用了“假说和检验”策略的波普尔纲领,即产生出最有趣的假说并进行严峻检验。有这样的程序,有助于用统计数据构造起线性的因果解释。另一些程序运用昔日哲学家的知识,归纳推理是单调的,即意味着从一组前提归纳地导出的结论,可能并不是前提的协调拓展。例如,鸟会飞,吱吱叫是鸟,于是推论出吱吱叫会飞,但是它不会飞,如果我知道吱吱叫是鸵鸟。
另一种策略是将复杂问题分解成简单部分或复杂性较小的子问题,例如乔治·波利亚的启发性数学手册《如何求解》中就使用了这种策略。因此,应用领域必须允许分解为独立的部分。但是,显然,相关性复杂网络并不总能分解而不改变系统的原先状态。例如,人类环境的生态网络或精神病医生必须要分析的复杂的心灵相关性。系统并非总是其部分之加和。
科学哲学中的一些划界可以翻译为以知识为基础的系统的性质。如果研究使得理论概念得到广泛运用而成为一个理论的固有特性,那么发现过程就可以描述为依赖理论的(理论推动的)。相反的观点,通常叫做培根观点,把大批数据作为其起始点。那么,发现过程就称作数据推动的。在理论的和数据的知识处理之间的划界,在AI中是众所周知的。
现在我将从以知识为基础的系统中勾画出一些程序,这些系统使得各种各样学科的任务得以完成,其优点前面也已经提到了。我的第一个例子涉及到数学。AM是一个以知识为基础的系统,可以说,它从数论中递归地产生出和重新发现了概念。与经验科学中的程序形成鲜明对照的是,AM成功的标准并非是一个概念与经验数据的吻合,“有趣”的方面却是它产生出例子、新问题等等的能力。这种程序是1977年用LISP语言写出的,始于诸如集合、表格、相等和操作这样的基本概念,可以提出引导发现过程的建议。启发过程是在原来的基础上提出新任务并创立新概念。新的任务按照其有趣的程度整理成一定次序。由若干不同启发过程提出的种种任务,比由单个规则提出的任务更为有趣。
运用这种措施来引导它对数学概念空间进行搜索,AM为整数、乘法和质数定义了概念,并发现了关于质数的命题(例如因子唯一分解性定理)。
不过,更深入的分析表明,对发现的历史过程进行模拟的要求是难以满足的。AM的成功完全决定于编程语言LISP的特征。然而,分析显示了与人们研究过程的有趣类似。
如同其名称LISP表明的,符号表是系统地作出的。两个表可以递归地定义为相等的,当两者是原子的且原子是相等的,否则当表头是相等的且表的其余部分是相等的。在LISP中,递归的布尔函数标记如下:
(DE LIST-EQUAL(XY)
(COND((OR(ATOM X)(ATOM Y))
(EQ X Y))
(T(AND
(LIST-EQUAL(CAR X)(CAR Y))
(LIST-EQUAL(CDR X)(CDR Y))))))
这里,CAR和CDR分别是LISP中,对于给定的符号表进行表头和表的其余部分分类的基本操作。AM的一个启发的概括规则推广了等价这一术语。然后,两个表被称作“广义相等的”,如果两者是原子的且原子是相等的,否则表的其余部分是“广义相等的”。在LISP中:
(DEL-E-1(XY)
(COND((OR(ATOM X)(ATOM Y))
(EQ X Y)
(T(L-E-1(CDR X)(CDR Y)))))
由此推广,所有具有相同长度的表都被看作是等价的。它们定义了叫做“数”的一类。儿童面对具体对象时实现的这种发现过程,由AM通过变换规则进行了模拟。加法是两个表的连接。由启发变换规则来形成已产生概念的逆时,发现了质数概念。在AM基础上改进的EURISKO(1983),不仅仅可以发现新的概念,还可以发现新的启发过程。
一系列叫做BACON的程序对定量经验定律的发现进行了分析。BACON系统的名字取自弗朗西斯·培根,因为其中运用了培根关于科学推理性质的思想。它们是数据驱动的知识处理系统,其中包括数据收集,找出在两个或更多个变量之间的规则并对其进行检验。BACON的基本方法并不需要涉及数据的语法意义,它们对于数据进行操作,不对数据的结构作任何特殊的假定。有时,需要人们对于独立项进行实验控制,传统的“一次改变一项”的方法可以用来从相关变量中分开每一独立项的效应。BACON程序可以再产生出物理定律,包括波义耳定律、开普勒第三定律、伽利略定律和欧姆定律。
有关考察表明,这种以知识为基础的系统至少要遵从这样的前提条件:对于不同学科间规律的关联,应该满足同样的方法论和启发框架条件。相应的以知识为基础的系统,不仅仅是再产生一定的定律,这些定律是在不同的历史背景中发现的,而且也对称地产生出完整的方法论概念的范围和挑选出有趣的应用。最新的BACON程序不仅仅是数据推动的,因而是严格的意义上的“培根式的”,而且还是理论推动的。在其对称性和守恒定律的理论前提下,它产生出了例如动量守恒定律。
另一系列程序能够从经验数据中归纳出定性定律(GLAUBER,STAHL,DALTON)。这些程序还可以从一些现象中归纳出结构性和解释性模型。定性定律通常是化学中的定律。
科学家与机器之间的竞争并非是有意的。不过,对于科学定律和理论做出系统的结构性分类已经实现。它可以使人们对科学定律及其发现条件的复杂性进行新的洞察。
对于科学发现的多种多样活动的若干方面,诸如发现定量定律,产生出定性定律,推导出物质的成分和提出结构模型。一种整合的发现系统已经显示出曙光,它把个别系统作为组件结合起来。每一组件都接受其他一个或多个组件的输入。
例如,STAHL集中在确定化学物质的成分上,而DAL-TON则关心反应中涉及到的微粒数目。因此,STAHL可以看作是,为DALTON所论的问题奠定了详细的结构模型基础。以这种方式,有可能发展起越来越复杂的以知识为基础的系统,将研究分解为知识处理和问题求解。
甚至在这样的扩大了的研究框架中,我们仍然没有涉及到实验计划或新测量手段的发明所依赖的机制。任何固有的概念与实施测量的实验安排结合起来,都可以用作一种科学的工具。在此情形下,工具的发现恰好也就与概念自身的发现是重合的。
还有一些以知识为基础的系统,它们考虑了实验的设计以及它们与其他科学研究活动的相互作用。在图5.11中示意了一个叫做KEKADA的系统(由西蒙研究小组发明),其中有假说产生者、实验选取者和预期设定者等等。它已经发展到为生物化学中的实验设计建立模型(克雷布斯1935年发现尿素循环)。如同知识工程师,西蒙和他的小组分析了克雷布斯的实验室记录,定义了他的研究方法论规则,并将其翻译成LISP类型的编程语言。
如果该系统没有确定哪一任务继续进行,问题选取者就将决定该系统将继续进行某一任务。当遇到了新的问题时,假说产生者就造出假说。假说或策略建议者将选取一种策略继续进行下去。然后,实验建议者将提出将要进行的实验。两种类型的启发过程可能都需要决策者。实验者的结果由假说修订者和确证修订者来加以解释。合适时,问题产生者可能把新问题加入进来。如果实验的结果与对于实验的预期相抵触,那么对于这种迷惑人的现象的研究就成为一个任务,并列入议程。
甚至该系统的组件也是一种操作者,它是由产生规则表来定义的。除了专业领域启发过程以外,系统还包含一般的规则,它们是一般研究方法论的部分。引人瞩目的是,特定的规则定义了这样的情形,即实验结果是某种“迷惑人的现象”。科学发现因此就成为了由问题求解启发过程引导的一个渐进过程,而不是由个别的“洞察闪光”或突然飞跃所导致的。这些以知识为基础的系统的例子,在例如程序DENDRAL是化学家的实验室助手的意义上,可以解释为哲学家对科学进行研究的助手。借助它们,可以对某些启发性规则产生的整个可能规律的空间进行调查。但是,它们是精确的助手,而不是主人。它们的“洞察的闪光”,这种由系统识别到的“惊奇之举”,是取决于程序框架的,是由主人设定的。
激发了早期AI研究者的图林问题怎么样呢?“机器能否思维”?机器有“智能”吗?在我看来,这种问题对于计算机技术是一种形而上学的问题,因为“思维”和“智能”都不是清晰定义的计算机科学或AI的概念。
这就是我们今天所能说的一切。如果一个程序产生出一种结构,该结构可以解释为一种新概念,那么所用变换规则就隐含地包含了这种概念和相应的数据结构。引导这些规则应用的算法,使得这种隐含给出的概念和数据结构变得明白起来。在关于AI的哲学讨论中,多数含混都是由AI的术语引起的,它是在技术意义上引入的,但是却结合进了一些往往是陈旧的和精致的哲学和心理学意义。在其他学科中,我们不得不与传统的术语和概念生活在一起,同样,如果将它们从其技术内容中抽象出来,那么它们就可能是高度含混的。“人工智能”(AI)中的“智能”概念就是一个例子。
一个常常迷惑哲学家的术语是AI中“知识”的用法。让我再一次强调,在“以知识为基础的系统”术语中的“知识”具有技术上的意义,并不声称要解释整个哲学的、心理学的或社会学的知识概念。在AI技术中,作为实际的计算机科学的部分,完全没有涉及到哲学还原论。
在所谓的“以知识为基础的系统”中的“知识处理”意味着一种新的复杂信息处理,这要与过去的仅仅是数字的数据处理区别开来。它涉及到翻译和解释的复杂变换规则,其特点是处于编程语言(今天是LISP或PROLOG)层次结构的较高水平上。这种水平接近于自然语言,但是当然不是等同于自然语言,而只是抓住了人类知识的广泛意义的一些方面(图5.12)。然而,知识处理仍然是程序控制的,并处在莱布尼茨的思维机械化的传统中。
如果人的精神被认为一种图林类型的计算机,那么支配着人的身体和大脑的自然规律之间就没有什么关联。计算机软件中的算法程序并不取决于物理机械的硬件,而取决于数学上理想化的图林机概念。但是如果把人的精神理解为自然进化的产物,那么关于人的精神的形成的物理、化学和生物学的规律的关联性就必须加以考察。在现代物理学中,基本的物质理论是量子力学。在经典物理学中,物理系统的相互作用被设想成与人类观察者完全无关的过程,而现在看来人的意识也在测量过程中起着关键性的作用。首先,我将要尽量地批判这些解释,但是采取怀疑式的探究方式。然而,业已表明,量子力学是高效的广义量子计算机和量子复杂性理论的物理学框架,它们与经典的图林机和经典的复杂性理论是不相同的。
显然,图林机可以在经典物理学框架中得到解释(图5.13)。这种计算机是一个物理系统,其动力演化使之从一组输入状态之一进入到一组输出状态之一。状态以某种系列方式加以标记。让机器处于一定输入水平的某个状态,随之进行某种确定性运动,然后再测量其输出状态。对于一个经典确定性系统,所测得的输出标记是输入标记的一个函数f。原则上,该标记值可以由外部观察者进行测量,这就是说该机器计算出了函数f。但是,经典的随机计算机和量子计算机并不计算上述意义上的函数。一台随机计算机的输出状态是随机的,依赖于输入状态的可能输出只是某种几率分布函数。量子计算机的输出状态,尽管完全是由输入状态确定的,但并非可观测的,因此观测者一般很难发现其标记。原因何在?我们必须记住量子力学的一些基本概念,这在2.3节中已经谈论过。
经典的确定论机器:
输入→输出
经典可观测量确定论演化经典可观测量
经典随机计算机:
输入→输出
经典可观测量随机演化经典可观测量
量子计算机
输入→输出
量子可观测量确定论演化量子可观测量
图5.13经典的和非经典的计算机
在量子力学中,如动量或位置这样的矢量,必须用算符来代替,此种算符满足某种依赖于普朗克量子的非对易关系(图2.18)。由哈密顿函数描述的经典系统被量子系统代替,例如,电子或光子用哈密顿算符来描述。量子系统的状态由希尔伯特空间的矢量来描述,由其哈密顿算符的本征矢量来确定空间距离。算符状态的因果动力学是由叫做薛定谔方程的偏微分方程确定的。经典的可观测量是可对易的,而且总是取确定值,而非经典的量子系统的可观测量则不可对易,一般没有共同的本征矢量,结果也就没有确定的本征矢量。对于量子状态的可观测量,可以计算的只是统计的预期值。
与经典力学的一个主要区别在于叠加原理。它揭示了量子力学的线性特征。在一个关联的纯量子叠加态,可观测量只有不定的本征值。简言之,量子力学的叠加或线性原理提供了复合系统相关(“关联”)状态,这得到了EPR实验的高度确证(Alain Aspect,1981)。从哲学上看,(量子)整体要大于其部分的加和。
叠加原理对于量子系统的测量有重要的后果。在量子形式化中,一个量子系统和一套测量装置由两个希尔伯特空间来表示,它们以张量积组合起来H=H1H2。以H1和H2分别出于两个独立的状态和,在时刻O,测量系统的始态(O),相应有(O)=。两个系统的因果发展是由薛定谔方程确定的,即(t)=U(t)(O),U(t)是归一化算符。由于U(t)的线性,态(t)是与不定本征值关联的,而测量仪器在时刻t显示出一定的测量值,它们显示出不同的测量值。因此,线性的量子动力学不可能解释测量过程。
以更通俗的方式来说明测量过程,可以用薛定谔的一个关于猫的思想实验,其中涉及“死”和“生”两个状态的线性叠加(图5.14a)。设想一只猫,被关在一个封闭箱子中。箱子中装有镭,镭一小时发生一次衰变,其几率为1/2。如果发生了衰变,电路闭合,引起相应机制的动作,使得小锤打破装有氰氢酸的小瓶,从而杀死这只猫。该箱子继续保持封闭一小时。
按照量子力学,猫的两种可能状态——死和生——都是不确定的,直到观测者打开箱子才能得到结论。对于箱子中的猫的状态,如薛定谔解释的,量子力学预见了一种相关(“关联”)的叠加态,即猫的死和活各占一半。按照测量过程,“死”和“活”状态被解释为测量指示器,代表着镭“发生了衰变”或“未发生衰变”状态。
在玻尔、海森伯和其他人的哥本哈根解释中,测量过程被解释为所谓的“波包坍缩”,即把叠加态分裂成测量仪器的两个状态,并测得了量子系统有两个确定的本征值。显然,我们必须把量子系统的线性动力学与测量的非线性动作区别开来。原因在于,世界的非线性常常被解释为人的意识突现。
欧基尼·威格纳(1961)主张,薛定谔方程的线性,对于有意识的观测者可能不适用,应该以某种非线性程序来代替,据此其中的任何一种选择都可以得到解决(图5.14b)。但是,威格纳的解释使我们不得不去相信,复杂的量子线性叠加仅仅在宇宙中出现了人这样的意识的角落,才将被分解为独立的部分。在弹子球、行星和星系的宏观世界中,EPR关联性是测量不到的,它只在基本粒子如光子的微观世界中才显示出来。显得十分奇怪的是,在宏观世界的独立系统状态——它们可以用具有确定测量值的经典力学来描述的,却是由人这样的意识引起的。
埃弗里特的量子力学的“多世界”解释,将人的意识分裂成不同分支,使不同的、互不相容的世界受到抑制(图5.14c),从而仿佛避免了非线性还原的问题。
在测量过程中,测量仪器和量子系统的动力学的描述使用的方程(t)= ci(t)ii,式中状态(i)涉及测量仪器的测量值。埃弗里特认为,态矢量(t)不分裂成部分状态,但是出现了所有的分支ii状态(t)描述了多重的同时存在的真实世界,ii相应于第i个平行的世界。因此,所测量的分系统决非一个纯态。在埃弗里特的意义上,n可以解释为相对态,它依赖于观察者或测量仪器的状态: n=Cn-1(n,)H2。如果n被看作记忆状态,那么具有一定记忆的观察者只可能意识到他自己的世界分支n×n。但是,他能够观测其他的分世界。
埃弗里特解释的优点在于,叠加的非线性还原并不需要解释。而缺陷在于他的多世界的本体论信念,这样的世界原则上是不可观察的。因此,埃弗里特的解释(如果数学上协调)需要奥卡姆剃刀。
在科学史上,拟人的或目的论的论据往往表明,科学在此存在着解释的分歧或失败。因此,一些科学家如罗杰尔·彭罗斯提出,量子力学的线性动力学对于解释出现意识的宇宙演化是不能令人信服的(爱因斯坦说它是“不完善的”)。他争辩道,线性量子力学和非线性广义相对论的统一理论,至少在原则上可以解释世界上的独立宏观系统状态,而不必牵涉到拟人的或目的论原理。在彭罗斯主张的统一理论中,物理系统的线性叠加,当系统对于相对论引力效应充分大时,就会分裂成独立状态。彭罗斯计算了在一个引力子水平上,对于这种效应的最小的曲率单位的情况。该思想是,这种水平应该令人满意地落在线性量子力学定律的原子、分子等等的量子水平与日常经验的经典水平之间。彭罗斯论据的优点在于,量子世界的线性与宏观世界的非线性将可能用统一的物理理论来解释,而不必牵涉任何人F的干预。当然,我们仍然缺乏可检验的统一理论(参照2.4节)。
然而,由此引出的问题是,量子力学是否提供了人的大脑进化的框架,或至少为新的计算机技术去取代经典的计算机系统提供了框架。量子力学的基本思想是量子状态的叠加,这种叠加是由某种测量实现的线性量子动力学和叠加归并的结果。因此,一个量子计算机世界需要一种逻辑门的量子版本,在此输出将是某种统一算符应用于测量的输入和最终作用的结果。量子系统(例如光子)的叠加提醒我们计算的平行性。如果我们感兴趣的是对于许多计算结果的某种适当组合,而不是其部分的细节,量子计算机将变得非常有用。在此意义上,量子计算机可以在相对短的时间内实现可能的数量巨大的平行计算的叠加,从而克服经典计算系统的效率问题。但是,量子计算机仍将按照某种算法方式运行,因为它们的线性动力学是确定论的。测量的非线性将带来非确定论方面。因此,我们不可能期待,量子计算机将以超出图林机能力而以非算法算符方式运行。所以,量子计算机(如果它们构造出来了)对于复杂性理论和克服实际的计算约束可能更有趣。
关于人的大脑,我们想要争辩的是,量子水平上的基本粒子、原子和分子对于其进化是必要的,而不是需要其他的东西——物理学相关态的归并所必要的大脑精神状态。实际上,相当多的神经元对于单个量子及其叠加和牵连状态的归并并不敏感。但是,这些量子状态当然不可能被大脑的精神状态所察觉。我们既不能意识到叠加,也不能意识到它们由非线性的随机事件引起的分裂成单个状态。然而,在大脑的精神状态的形成和相互作用中涉及到量子效应,它们还远未被满意地理解。
5.3神经计算机和协同计算机
在逻辑、经典力学和量子力学之后,我们还要考察复杂动力学系统对于计算机科学和人工智能发展的关系。显然,图林类型机的算法机制面临着严重的障碍是不可能随经典或量子计算机能力的增长而克服的。例如,模式识别和其他的关于人的感知的复杂任务,不可能由程序控制的计算机来把握。人脑的结构看来是完全不同的。
在科学史上,大脑是用最先进的机器技术模型来说明的。因此,在机械化时代,大脑的功能被看作是沿着神经对于肌肉进行作的液压。随着电子技术的出现,大脑被拿来与电报或电话交换机进行比较。由于计算机的发展,大脑也就被当作最先进的计算机。在上一章中,我们见到,甚至量子计算机(如果它们被构造出来)也不可能使它们的能力增加到超出图林类型算法的复杂性。
与程序控制的系列计算机不同,人的大脑和精神的特征包括矛盾性、不完全性、顽健性和抗噪声、混沌态、对于初始条件的敏感性最后但并非最不重要的是还有学习过程。这些特征在复杂系统探究方式中是众所周知的。关于图林类型和复杂系统的构造,一个根本的局限性来自经典系统的顺序的、集中的控制,而复杂动力系统是内在平行的和自组织的。
然而,历史上,最初的神经网络计算机的设计仍然受到了图林机概念的影响。在麦卡洛克和皮茨的著名文章《神经活动中思想内在性的逻辑演算》(1943)中,作者提出了一种被神经元作为阈值逻辑单元的复杂模型,单元中有激发和抑制突触,这里就运用了罗素、希尔伯特、卡纳普及其他人的数理逻辑概念以及图林机概念。一个麦卡洛克-皮茨神经元在时刻n+1发放一个沿其轴突的脉冲y,如果在时刻n它的输入x1,…,xm和权重WI,…,Wm的权重和超过了神经元的阈值O(图5.15a)。
麦卡洛克-皮茨神经元的特殊应用是如下的逻辑关联模型:或门(图5.15b)模拟了句子x1和x2的逻辑析取x1ORx2(形式上是x1Ⅴx2),它为假,仅当x1和x2是假句子,否则它是真的。真值是二元表示0(代表假)和1(代表真)。对于阈值Θ=1和权重W1=1和W2=1,或门以x1w1-x2w2≥Θ的方式发放,只要x1或x2或者x1和x2都是1。
与门(图5.15c)模拟了x1ANDx2的逻辑合取x1并x2(形式上是x1x2),它为真,仅当x1和x2是真句子,否则它是假的。对于阈值Θ=2和权重w1=1和w2=1,与门以x1w1+x2w2≥Θ的方式发放,仅仅当x1和x2都是1。
非门(图5.15d)模拟逻辑否定NOTx1(形式上是x1),它为真,仅当x1是假的,否则它是假的。对于阈值Θ=0和权重w1=-1,非门以x1w1≥Θ的方式发放,仅当x1为0。因此如果x1是1,那么非门并不发放,这意味着输出y=x1=0
一个麦卡洛克-皮茨神经网络是一个麦卡洛克-皮茨神经元系统:把每一神经元的输出分解成为线路而相互关联起来,其中一些输出还与其他神经元的输入相关联(图5.16)。尽管这种系统概念非常简单,但是任何“经典的”冯·诺意曼计算机都可以用这种神经元网络进行模拟。1954年,约翰·冯·诺意曼写了一篇报告稿。它以首次明确阐述存贮程序的思想而闻名,存贮程序与其要操作的数据都可驻留在计算机的记忆装置中。该历史文献表明,冯·诺意曼完全意识到用麦卡洛克-皮茨网络进行计算的可能性。
数学上,一台冯·诺意曼计算机可以设想为一台有限自动机,包括有限输入集X、有限输出集Y和状态的有限集Q。有限自动机的动力学用下一状态的函数&来定义,将时刻t的状态q和输入X变换为时刻t+1的状态&(q,X),以及将输出函数B与状态q关联成为输出B(q)。
一台冯·诺意曼计算机的组件,诸如输入-输出单元、存贮器、逻辑控制单元和算法单元,都容易表明是有限自动机。甚至一台现代的数值计算机,它是由数千元素集成在芯片上的网络,也可以理解为麦卡洛克-皮茨类型的神经网络。一般地说,每一寄存机、图林机或递归函数,都可以用适当的有限自动机网络来模拟。但是这些麦卡洛克-皮茨神经网络的应用仍然是在程序控制系列计算机的框架中工作。
最先试图将图林的通用计算机概念扩展到自繁殖自动机思想又是约翰冯诺意曼。他注意到,一台建造其他机器的机器,会降低被建造机的复杂性,因为它使用的材料不可能多于由建造机所给定的材料。与这种传统的机械观点相反,生物进化中的活的有机体看来至少是可以与其父代一样复杂,而在长期进化中会增加其复杂性(赫伯特·斯宾塞)。
冯·诺意曼的细胞自动机概念,把活的有机体设想为细胞的自繁殖网络从而首次提出了为其建立数学模型的线索。态空间是均一点阵,它被划分为相同的元胞如同棋盘。一台初等的元胞自动机是一个元胞,它可以具有不同的状态,例如可以有“占态”(用一个记号)、“空态”或“色态”。初等自动机的集合体,被叫做一台复合自动机或构型。每一自动机都以其环境即相邻元胞为标志。自动机的动力学是由同步变换规则确定的。冯·诺意曼证明,活系统的典型特征,它们的繁殖自身的趋势,都可以用(平面上的)200000个元胞的自动机来模拟,在此每一元胞有29种可能的状态,4个相邻角上的元胞则作为环境。
这种思想由约翰·康韦发展了,他的元胞自动机可以模拟活系统群体的生长、变化和死亡。下面是一个简单的例子,其中元胞有两种可能的状态“占态”(记号)或“空态”,使用同步规则:
1)生存规则:一个有2至3个占态相邻元胞的占态元胞保持不变化。
2)死亡规则:一个元胞丢失了它的记号,如果它有3个以上的邻居元胞(“群体过密”)或少于两个邻居(“孤立”)。
3)新生规则:如果一个空的元胞正好具有3个占态的相邻元胞,那么它就获得一个记号。
图5.17a示意了一种构型在第三代的“死亡”,图5.17b示意在第二代的“生存”。康韦的理论还有一些更令人吃惊的结果,它们是通过计算机实验发现的。
元胞自动机不仅仅是优美的计算机游戏。它们还是描述了其动力学演化的非线性偏微分方程复杂系统的离散化和量子化模型。让我们再想像一块类似棋盘的元胞的平面。一条有限的元胞串,构成了一台1维元胞机自动机,其中每一个元胞都可以取两种状态之一(“黑”(0)或“白”(1)),它仅仅与其两个最近相邻发生关联,在此它们交换关于其状态的信息。1维元胞自动机的紧随的(下一个)状态是空时平面紧随的元胞串,其中每一都由取得一种或两种状态的元胞构成,依赖于它们先前的(上一个)状态和它们的两个最近相邻。图5.18b-e表示4个元胞自动机在60步中的时间演化。因此,1维元胞自动机的动力学是由3个变量的布尔函数确定的,其中的每一个变量都可以取值0或1。
对于3个变量和两个值,3个近邻有2[3]=8种可能性。在图5.18a中,它们是按照相应的3个数字的二进制数排序的。对于3个近邻中的每一个,必定有一个规则确定中间元胞的随后状态。对于8个数字的序列和两种可能状态,有2[8]=256种可能的组合。这些可能的组合之一,确定了一个1维元胞自动机的动力学,这示意在图5.18a中。
每一规则,由8个数字的二进制数的状态来标志,这些状态是每一随后的元胞串可以采取的。这些二进制数可以按照它们的相应的十进制数来排序。
这些规则的时间演化标志了1维元胞自动机的动力学,从随机的初始条件出发产生出非常不同的元胞模式。计算机实验给出了演化的元胞模式所要采取的如下的吸引子类型。经过一些步骤以后,类型1的系统到达了与起始条件无关的平衡均匀态。这种平衡终态示意为完全的白平面,并相应于某种作为吸引子的不动点(图5.18b)。
类型2的系统,经过一些步骤后,表现出恒定的或周期的演化模式,它是相对独立于其起始条件的。模式的特定位置可能依赖于起始条件,但不是总体模式结构都取决于起始条件。
类型3的系统向混沌态作为终态吸引子演化,而没有任何的总体周期性。这些混沌模式敏感地取决于起始条件,并表现出具有分数维数的自相似行为(图5.18d)。类型4的系统产生高度复杂的结构,具有局域传播形式(图5.18e)。类型3和4的系统对于微小的涨落是敏感的,微小的涨落可以影响秩序的总体变化(“蝴蝶效应”)。因此,在这些情形中,演化过程不可能作出长期预测。
显然,这4种类型的元胞自动机模拟了自组织过程中大家熟悉的非线性复杂系统的吸引子行为。在前面的章节中,我们已经看见了许多物质、生命和精神-大脑进化的例子。在第6章中,我们将要考虑许多与人类社会进化的类似性。一般地,自组织被理解为复杂系统中的相变。宏观模式从微观元素的复杂非线性相互作用中出现。相变的不同终态相应于数学上不同的吸引子。
在图2.27a-e中,已经对于流体的不同吸引子进行了考察,流速是逐步加速的。这些流体模式,与相应的元胞自动机的演化模式有许多相似之处。在最初的水平上,流体到达了均匀的平衡态(“不动点”)。在较高速度时,可以观察到两个或多个顶点的分叉,相应于周期的和准周期的吸引子。最后,有序衰退为确定论混沌,它是复杂系统的分形吸引子。元胞自动机的类型3和类型4对于建立过程模型极为有趣。类型3提供了混沌系统的演化模式。类型4表现了耗散系统的演化模式,这样的系统有时具有拟有机形式,它们可以在有机体和群体的进化中观察到。
从方法论的观点看,一个一维的元胞自动机提供了一种离散的量子化相图模型,描述了依赖于一个空间变量的具有非线性偏微分演化方程的复杂系统的动力学行为。人们局限在离散模型的原因是多方面的。非线性系统的复杂性往往太大了,难以在合理的时间内计算出近似数值。在这种情形下,一个离散的模型对于系统的长期的总体动力学行为,可以提供大致的,但是充分的信息。如果进化规则的相关性被扩大到元胞串中的两个邻居以上,动力学行为就不同了。
二维的元胞自动机,在康韦的生命游戏中已经使用了,可以被解释为采取非线性演化的复杂系统的离散模型,依赖于两个空间变量。显然,当非线性系统的复杂性增加,以及由求解微分方程或甚至由计算数值近似来确定其行为变得越来越无望时,元胞自动机是非常灵活有效的建模工具。
从历史角度看,元胞自动机的现代发展可追溯到冯·诺意曼早期的自繁殖自动机思想。除了自繁殖以外,与传统的计算机相比较,还有另一个特征对于自然复杂系统是根本性的。人的大脑具有学习的可能性,例如,通过感知进行学习。在麦卡洛克-皮茨网络提供的大脑的一级逻辑模型中,人工神经元的功能对于所有时间都是不变的。麦卡洛克-皮茨成功地揭示出,这种类型的形式神经元网络可以计算任何有限的逻辑表示。
但是,为了使神经计算机能够执行复杂的任务,有必要去发现自组织机制,使神经网络能够进行学习。唐纳德·霍布1949年提出的第一个神经生理学习现则,在神经计算机的发展中具有重要意义。神经元突触的敏感性并非一成不变,而是在改变着自身,以有利于重复出过去已经反复出现过的发放模式。
1958年,罗森布洛特设计了第一台学习神经计算机,它以名字“感知机”而闻名。罗森布洛特原先是一位生理学家,专注于人的学习过程的生理学活动。他设计的学习机具有复杂的适应性行为,工程师和物理学家都很感兴趣。因此,用不着惊奇,生理学家的新颖思想被工程师抓住了,那些工程师对机器人和计算机技术,比对于模拟人脑中的过程,具有更大的兴趣。从技术的观点来看,神经计算机的学习程序是否与心-脑系统的学习过程类似不是根本性的。它们必须在管理复杂的适应行为时是有效的,但是可以利用完全不同于已知的生物进化中的方法。
罗森布洛特的神经计算机是一种馈向网络,采用二进制阈值单元,有3个层次。第一层是感知面,叫做“视网膜”,它由刺激细胞构成(S单元)。S单元与中间层相联接,其间的权重固定,在学习中不发生变化。中间层的元素叫做联想细胞(A单元)。每一A单元都有某些S单元的固定权重的输入。换言之,一些S单元将其输出投射到一个A单元上。一个S单元还可以将其输出投射到几个A单元上。中间层是完全与输出层相联接的,输出层的元素叫做反应细胞(R单元)。中间层与输出层之间的权重是变量,因此是能够学习的。
感知机被看作神经计算机,它可以将感知模式分成可能的若干组。在两组的情况下,每一R单元学习以激活和去活方式去区别输入模式。感知机的学习程序是受指导的。因此,必须清楚地认识与所要学习的模式相应的所希望的每一R单元的状态(激活或未被激活)。要学习的模式提供给了该网络,在中间层和输出层之间的权重按照学习规则进行适应。重复此程序,直至所有的模式产生出正确的输出。
学习程序是一种简单的算法:对输出层的每一元素i,实际上输出o,它是由一定模式产生出来的,与所希望的输出d;相比较。如果oi=di,那么该模式就已正确地分类。如果所希望的输出di等于1以及实际上的输出oi等于0,那么在时刻t的所有的权重wij(t)以及激活单元(oj>0)在随后的步骤t+1树放大,或形式上有wij(t+1)=Wij(t)+σoj。常数u是学习速率,它可以按照其大小增加或减少学习的速度。如果所希望的输出等于0,实际上输出等于1,那么所有具有激活元素的权重都会消失,或形式上有wij(t+1)=wij(t)-σoj。
感知机看来是以无所不能的神经网络开创了一个计算机技术的新时代。感知机小组在早期的文章中进行了如此的夸张。但是,1969年,尖锐的批评使得这种热情消失了。那一年,马尔文·闵斯基和西摩·帕佩特出版了一本著名的书《感知机》,书中以数学精确性讨论了感知机的局限性。对于这一分析的反应是,大多数研究小组都放弃了它们对于神经网络和复杂系统探究方式的兴趣,而转向经典的AI和计算机技术,看来这比感知机迷的“猜测”要更有益。
但是1969年以后的这种科学共同体的态度,当然是又一次反应过度了。无批判的热情和无批判的谴责,对于科学的进化都是不合适的做法。达尔文进化用了成千上万年,才使得我们的大脑具有了模式识别的能力。如果我们的工程师只用几年就成功地构造出来类似的神经计算机,那就是奇迹了。
关键是随后的一些问题。感知机能够干什么?不能干什么?感知机为何不能干?回答这些问题的一个基本步骤是闵斯基和帕佩特证明的所谓感知机收敛定理。它保证了原则上可用此种网络学习并可在有限的学习步骤中发现解。在这种意义上,系统收敛到一个解已经得到了证明。
但是由此引出的问题是,特定的解是否原则上可以用感知机进行学习。一般地说,我们必须确定适用于感知机的问题类型。一些简单的例子表明,感知机并非如最初热情中所相信的那样是通用的。例如,一台感知机是不可能区别偶数和奇数的。一个特例是所谓的奇偶性问题对于初等逻辑的如下应用。
感知机不能学习排除OR(缩写为XOR)。这种无法解决的认知任务是感知机应用于AI的一个严重局限。此原因容易说明。排除OR对于xXORy,仅当或x或y为真时为真,并非x和y都为真。一条OR语句的xORy,仅当x和y都为假时为假,否则为真。如下的表提供了布尔函数OR和XOR的值:
现在,设想一个网络,有两个输入单元x和y,以及一个输出单元z,它们可以采取状态1(激活)和0(末激活)。要模拟XOR,对于一个偶的输入(两个输入单元都是激活的或都是末激活的),输出应该为0,而对于一个奇的输入(一个单元是激活的,另一个是末激活的),输出应该为1。在图5.19a,b中OR和XOR的可能输入构型示意在一个坐标系中,其中输人x和y作为坐标。
坐标x和y的每一对(x,y)具有相应的值z,它是用白点(0)或黑点(1)来标记的。一个线性的阈值元素Θ计算加权输入x和y,权重是w1和w2,形式上即是Θ=w1x+w2y。一个简单的求导提供了一条直线,示意在图5.19a,b中。直线的位置是由权重w1和w2确定的。它将阈值元素的激活和末激活的状态隔离开来。
为了求解(“学习”)OR问题或XOR问题,权重w1和w2必须以这样的方式加以调整,使点(x,y)以及值z=1与具有0值的点隔离开。这种线性的隔离对于OR问题从几何上是可能的,但是对于XOR问题是不可能的。一般地说,感知机对于输入模式的分类,局限在线性隔离模式的范围。
这种结果能够容易地被推广到两个以上输入单元和真值。许多问题在线性不可隔离的意义上,类似于XOR。实际上大多数有趣的计算问题都具有这种特征。XOR问题可以由加上一个隐含单元到具有两个输入与输出相关联的网络中来解决。隐含的元素是与输入和输出都关联的(图5.19c)。
当两个输入都是0时,具有正值的隐含中间单元就关闭了。一个0信号到达输出,以及由于在这种情况下阈值为正,所以输出为零。如果两个输入中只有一个为1,隐含单元保持关闭,输出单元由输入和输出之间的直接关联而接通。最后,当两个输入都是1,隐含的单元发放到1,并以负的权重-2抑制了输出的接通。
因此,隐含单元允许某种适当的内部表示。XOR问题已经成为一个在三维坐标体系中用二维平面进行线性分隔的问题,3维坐标系以输出单元的3个输入为坐标。分割是可能的,因为输入(1,1),现在z平面上移动到了点(1,1,1)(图5.19d)。
一台感知机只有一个中间层,它是可以学习的处理元素。对于多层网络,问题是,对于与外界没有关联的多层神经元,产生的错误是不可能直接察觉的。一个错误可以是直接在输出层和其下的中间层之间产生的。
多层神经网络可能具有的表示能力和问题求解能力,取决于学习层的数目和在这些层中的单元数目。因此,对于神经计算机的一个至关重要的问题就是要研究计算的复杂性,因为神经网络的复杂性的增加是从感知机的局限性中走出来的方式。
在4.2节中,我们已经讨论了在多层神经网络中的后向传播(图4.17)。一个后向传播的学习算法使得我们去定义甚至处于隐含层上的一个错误的信号。输出层上的错误是递归地向后传播给下面的层次的。该算法是能够构造具有许多隐含层的网络的,其神经元能够进行学习。比起单层网络来,多层网络在其隐含的层次中可以表示多得多的信息,所以后向传播网络对于克服感知机的弱点是非常有用的模型。
但是,后向传播仅仅从技术上提供了成功的模型,这些模型一般并不与生物进化相类似。它们的权重调整看来很不同于人们所知道的生物突触的行为。计算机技术的目的并不在于模拟大脑,而是在合理的时间内实现的问题有效求解。另一方面,我们必须要放弃孩童式的幻想,认为自然是类似上帝的工程师,进化中他总是在发现最好的解。正如我们在前面的章节已经强调的,自然中没有集中化的控制和编程单元。常常只有局部的解。它们一般并非是“最优”的。
1988年,戈尔曼和西杰诺夫斯基设计了一种馈向网络,并用误差后向传播方法对其进行训练,试图将其用于区别岩石与矿石的声纳系统。要区别出岩石与矿石的回声是相当困难的,甚至用受过训练的人耳也难以胜任,而这对于海底的工程是相当重要的,海底工程需要能区别爆炸矿石和岩石的声纳系统。用于这种目的的网络构造中,输入层有60个单元,隐含层有1-24个单元以及两个输出单元,每一个代表将要进行区别的原型“矿石”或“岩石”(图5.20)。
最初,一定的声纳回声是用频率分析器来处理的,它分解成60个不同的频率带。每一复盖间隔的值域在0和1之间。这些60个值是一个输入矢量的组分,输入矢量给予相应的输入单元。它们由隐含的单元进行变换,导致了两个输出单元之一的激活,这里的值也在0和1之间。因此在一个经过训练的很好调节了权重的网络中,一种矿石的回声导致输出信号(1,0),而岩石的回声则具有输出信号(0,1)。
为了训练此网络,我们必须向它输入矿石和岩石回声的样品。在每一种情况下,输出单元的实际值,都按照相应的输入,进行了测量并与预期值进行比较。其差异是错误信号,引发单元中的权重发生小的变化。用这种梯度下降的程序,网络的权重就缓慢地进行了调整。
戈尔曼和西杰诺夫斯基的矿石-岩石网络是复杂系统对于AI的一种应用。当然,它并没有声称,此系统在模拟人的大脑来区分像“矿石”和“岩石”这样两个概念。但是,我们可以说,这种技术系统也具有某种内部表示,即表示了作为其隐含层中原型矢量的两个概念。在这种限制的意义上,人工系统是有“智能”的,因为它可以完成在人脑情况下用智能来进行评价的任务。人工网络并不局限于对概念进行二元区分。1986年,西杰诺夫斯基和罗森伯格设计了一种叫做NETalk的网络,它已经学会了如何阅读。它采取从英语教科书中形成的字符串,并将它们转化成音素串以输入到语音合成器中。惊人的事实并不是它像小孩似的口吃的声音,在通俗书中它已经被赞为辉煌的成功。NETalk的基本能力是对于若干拼音概念的内部表示。对于字母表中的每一字母,至少有一个音素指定给它。对于许多字母,其中有若干音素需要标记,这取决于词汇的上下文。
西杰诺夫斯基和罗森伯格运用了3层馈向网络。它有一个输入层,一个中间隐含层和一个输出层。尽管后向传播与生物学大脑中“自然地”实现颇为不同,但与其他的解相比,它都表现为最快的学习程序。输入层注视课文的七字符窗口,例如,图5.21a中的短语“The-phone-is-”中的词“phone”。每一个七字符都被29个神经元相继地进行了分析,每一神经元代表了字母表中的一个字母,也包括括号和标点。因此,正好是每一具有29个元素的神经子系统的一个神经元被激活。
输出层包括26个神经元,每一个神经元表示一个拼音组分。对于拼音的位置有6个组分,对于发音有8个组分,对于音高有3个组分,对于标点法有4个组分,对于重读和音节划分有5个组分。于是,从这4组组分中,每一声音都有4种特征。输出层有7×29=203个神经元,与80个隐含层内部神经元联结起来,它又是与输出层的26个神经元相互联结的(图5.21b)。在这些层中的神经元是不联结的。输入和输出层的神经元也是不直接联结的。
隐含层的神经元接收来自203个输入神经元的信号,但是只把26个信号送给输出层。由于内部神经元是阈值单元,具有阈值T1,…,T8,输出是乘以特定权重的,这些积的和的大小决定了此神经元是否激活(图5.21c)。现实中,激活的发生是按照一个连续的“sigmoid曲线”,并非某种数字跃迁。
最初,权重是随机固定的。因此,NETalk始于无意义的结结巴巴的发音。在学习阶段,NETalk运用了特殊的供小孩阅读的课文,其发单是人人皆知的。随机的声音与所希望的声音进行比较,权重由后向传播进行校正。令人瞩目的是,这种程序是一种自组织,而不是一种基于规则的发育程序。对于由实际输出来近似所希望的输出造成的权重改变,仅仅存在一种总体上的要求。对这种课文运行10遍以后,网络已经能够有理解地进行发音。经过50遍以后,就只有5%的错误了。在这一阶段,对于未知的供小孩阅读的课文的发音,错误也只有22%。
今天,像NETalk这样的网络还必须用传统的冯·诺意曼计算机来模拟,因为还没有直接的复杂网络的硬件。因此,每一神经元必须顺序进行计算。甚至在今天,自组织复杂网络的原理还主要是在软件上实现的,而不是在硬件上实现的。然而,我们将谈论“神经计算机”,因为硬件的实现只是一个未来的技术发展问题,有赖于诸如固体材料或光学程序这样的新技术,而不是原则性的理论局限问题。
由神经网络进行的映射,看来是颇为成功的,用于财政、保险和股票交易预见中是有益的。原因在于,对于股票行情的短期预测以混沌时间系列为基础,如果预测的时间周期减少,那么它就变得越来越混沌。
通常的统计程序仅仅在长期预测中才是成功的,它假定了股票的发展可以平稳进行,而又不丢失有关信息。好的统计程序的精确性在60%-75%之间。但是,短期的预测则是颇为有限的。传统的统计程序为了平稳股市的发展,必须要忽略短期预测的基本特性,即经常发生着的小的交换涨落。通常的统计程序中,相关计算因子必须明确给出。一个经过良好训练并适当设计的神经网络能够识别出关联因子,而毋需明确的编程。它能够以自组织的程序权衡输入数据并减少预测的错误。而且,它可以采取改变系统环境的条件,而不像计算机程序必须由编程者明确改变。为了设计一个用于股票预测的神经网络,必须对股市数据进行二进制编码使之作为输入数据。输入矢量的构成中,包括若干分矢量,它们代表着交换量,从昨天来的绝对变化,变化方向,从前天来的变化方向,以及与昨天相比的大于1%的相关量。如果输入矢量具有固定的长度,例如40个单元,那么分矢量的长度可以有些不同,依赖于它们所希望的相关。该系统可以有两个输出单元。左边单元的激活标志了股票值的减少,而右边单元的激活则标志了增加。
在学习阶段,网络中输入的是一定时期实际上的每天的交换率,例如从1989年2月9日至1989年4月18日。以这种学习数据为基础,该网络对于后面19天的发展进行预测。预测结果与实际上的曲线进行比较,以测量该系统的精确性。已经用后向传播方法对于几个多层结构进行了考察。它们以自组织方式发展起来对于预测特定的总体启发性。例如,如果一次预测接近该日期以后某天的实际值,那么错误就是相对小的。这种拇指规则的启发方式,在于这一事实:行情趋势的变化比起它保持不变来是更为不可能的。图5.22a,b示意了,预测曲线(+)和对于银行(Commerzbank)、公司(Mercedes)的实际股票行情曲线(-)。
显然,后向传播的馈向网络在技术上非常有趣,尽管它们看来与生物大脑中的信息处理没有多少相似性。在4.2节中,我们已经分析了具有反馈(图4.8b)和霍布类型学习(图4.9a)的霍普菲尔德系统,它显得也是生物大脑的工作方式。在均匀的布尔神经元网络的情形,神经元的两种状态可以与处于外磁场中的电子自旋的两个可能值联系起来。一个霍普菲尔德模型是一个动力学系统,与金属退火过程类比,将它看作是一种能量函数。由于它是非增的单调函数,系统进入局部能量极小值,相应于局部的稳定稳恒态(不动吸引子)。
因此,霍普菲尔德系统的动力学演化可以相应于精神认识。例如,一个代表字母“A”的始态噪声图像向代表正确图像的终态演化,它用若干个例子来对系统进行了训练(图4.9b)。物理解释使用了平衡热力学的相变。正确的模式与不动点或平衡终态相联系。一个更灵活的推广是波耳兹曼机,它具有非确定论处理器元的随机网络构造,以及分布的知识表示,数学上相应于一个能量函数(图4.11b)。
关于弛豫的一般思想是,一个网络收敛到以局域相互作用为基础的或多或少总体平衡状态。通过反复地修订局部的联接(例如在霍普菲尔德系统通过霍布学习策略),网络作为一个整体终于弛豫地进入了稳定的、优化的状态。我们可以说,局域相互作用导致了协同寻求,它不是受指导的,而是自组织的。一些网络对于精神类型的活动运用了协同寻求策略,例如,对于寻找可能的假设。设想竞争假说的一定范围由神经单元来表示,它们可以激活或抑制自己。于是该系统就离开了不太可能的假设,而奔向更可能的假设。
1986年,麦卡洛克和拉梅尔哈德把这种认知解释运用于模拟两可图的识别。两可图是在格式塔心理学中为人们所熟知的问题。图5.23a示意了一个协同寻求的网络,模拟识别尼克尔立方体两种可能的取向之一。每一单元就是一种涉及尼克尔立方体的一个顶点的假设。缩写是B(黑)、F(前)、L(左)、R(右)。U(上)、L(下)。假设网络由两个联接的子网络构成,每一子网络相应于两种可能解释之一。
不相容假设是负的联接,一致性假设是正的联接。权重的分配使得2个负的输入与3个正的输入格均衡。每一单元都具有3个正的相邻联接和2个竞争的负的联接。每一单元都接受来自激发的一个正的输入。要寻求的假设子网络是最适合于输入的网络。微小的涨落(观察者特定视野的某个小的细节)可以决定哪一种长期的取向被观察到。
为使网络的动力学形象地表示出来,假定所有的单元都是关闭的。然后,一个单元接收了一个随机的正值输入。网络将向一个子网络的所有单元都被激活而所有其他网络的单元都被关闭的状态变化。在认知解释中,我们可以说,此系统已经弛豫地进入了尼克尔立方体两可图左面和右面的两种解释之一。
图5.23b示意了3种不同的演化模式,它们敏感地依赖于不同的起初条件。环路的大小表明每一单元的激活程度。在第3种变化中,达到的是一种决非处在平衡态中的未确定的终态。显然,这种网络的构造原理是协同计算、分布表示和弛豫程序,这是人们在复杂系统动力学中所熟知的。
过去已经提出来许多人工神经网络的设计。它们是受到不同的原理如物理学、化学、生物学、生理学的启发,有时只是出于技术的目的。复杂系统探究方式的共同原理是什么?在前面的章节中,协同学引进了作为处理非线性作用复杂系统的跨学科方法论。对于推动从许多科学学科中确立的共同原理来建立特殊复杂系统的模型,协同学看来是一种成功的自上而下的策略。其主要思想是:复杂系统整体状态的形成可以解释为,处于远离热平衡的学习策略中系统元素的(宏观的)相互作用的演化。整体的有序状态解释为相变的吸引子(不动点、周期、准周期或混沌)。
例如,模式识别被解释为类似于应用在物理学、化学和生物学中的演化方程的相变。我们获得了一种跨学科的研究纲领,它使我们把神经计算的自组织解释为由共同原理支配的物理的、化学的和神经生物学的演化的自然结果。正如在模式形成的情形下,一种特定的识别模式(一张原型的脸)用序参量描述为一组所属特征的集合。
一旦其中属于该序参量的部分特征给定了(例如一张脸的一部分),序参量将完成所有的其他特征,所以整个系统是作为联想记忆发生作用的(例如给出脸的一部分使脸面根据贮存的原型脸重建出来)。按照哈肯的役使原理,识别出来的模式的特征相应于模式生成期间受役使的子系统(图5.24)。
如果将作为原型学习的一小部分脸部提供给一台协同计算机,那么它就能够用编码了的姓名来完成整张脸(图5.24b)。不同程度的模糊图像序列相应于协同计算机中状态的相变。
当一个不完整的模式提供给神经元,在不同神经元状态——每一状态都相应于一个特定的原型模式——之间的竞争就开始了。这种竞争中取胜的是相应于原型模式的神经元系统的整体状态,它对所提供检验的模式有最大的相似性。与对于模式形成有效的动力学完全相似,当一个检验的模式提供给协同计算机时,它将把检验的模式从起始状态(t=0)拉向一个特定的终态,相应于原型模式之一。
检验模式的演化,可以用势场中具有一定位置矢量的粒子的阻尼运动来说明。图5.24c示意了一个这种二维势场的例子。这两个原型相应于两个低谷。如果提供了一个模式,它的特征不可能精确地表明与原型的特征一致,那么该粒子的位置就处于势场的低谷之外。显然,识别是一种对称破缺,这已在图4.20a中的一维例子中进行了说明。
在协同学系统中,势场地形的形状可以由调整序参量来改变。由于协同学系统是开放的,控制参量可以代表能量、物质、信息或其他来自系统环境刺激的输入。当控制参量低于某个临界值,地形可以具有一个稳定的位置如图4.20a中的用虚线标出的一个低谷。在涨落引起的每一激发以后,序参量弛豫地向其静止态演化。当控制参量超过了一定的临界值时,先前稳定的状态就变得不稳定了而被图4.20a中两个低谷的两个稳定状态所取代。
协同计算机的学习程序相应于势场地形的构造。势强度用地形形状表示,示意神经联接的突触力。协同学探究方式的一个优点在于,标志着一个模式的数量巨大的微观细节是用一个宏观序参量来确定的。因此,协同计算机运用了典型的复杂性约化方法,这种方法已经应用在自然进化的协同学模型中(对照3.3节)。
序参量方程允许一种新的(非霍布的)学习,即一种最小化突触数量的策略。与旋晶类型的神经计算机(例如霍普菲尔德系统)相比较,神经元不是阈值元素,而是实施简单的乘法和加法。但是,旋晶类型的神经计算机与协同学计算机的基本区别在于:旋晶类型的复杂系统是物理学上的封闭系统。因此,它们的模式生成是由保守自组织推动的,没有任何的能量、物质或信息从外部输入。由保守自组织形成的典型模式是冬天窗户上的“死的”冰花,它们是在低能低温的平衡态冻结起来的。保守自组织的相变可以完全用波耳兹曼的平衡热力学原理来解释。
在3.3节中,我们已经解释了活系统的模式生成。它只有在远离热平衡时输入能量、物质或信息,才是可能的。这种自组织叫做“耗散”自组织(普里戈金)或“协同”自组织。然而,它们甚至也是可以在物理学、化学进化中发现的。因此,作为活系统的人脑敏感地依赖于来自外部世界的涨落,它将为协同学框架中的新计算机技术提供“蓝图”或模型。自旋玻璃类型的神经计算机对于特定的技术目的可以是实用的、成功的。但是,由于它们是物理上封闭的系统,在原则上不同于如人脑这样的活系统中发生的东西。
协同计算机的模式识别过程自发地产生出对于平移、旋转和标度的不变性。这些识别特征相应于现实的情形。例如,脸部并非总是如同学习阶段给出的那样,而是它们可以平移、旋转、缩小和放大、靠近和置远。协同计算机的一个出色的应用,是振荡的识别(例如两可图)和感知滞后现象。图5.25a示意了一个人们熟悉的滞后现象的例子。当人们的注视力开始从图的左边移向右边,一张男人的脸将在大约6幅模式以后变成一个女孩脸。当人们从相反的方向来进行,从感知到女孩变到一张男人的脸只有在接近左端时才发生。
图5.25b示意了协同计算机在特征序参量的时间演化中的感知过程。间断线指的是解释“女孩”,实线指的是感知“脸部”。第一幅图示意了,从男人脸的感知向女孩的感知的转移,第二幅图示意了从女孩的感知向男人脸的感知的转移。
也许可以提出反对意见,认为至今协同计算机仍然必须用传统的串行计算机来模拟。协同计算机的原理仅仅是在软件领域中实现了,而不是在机器的硬件中得到了实现。但是协同学及其跨学科应用将导致它的材料和技术上的实现。如同激光是一个为人们所熟悉的协同学模型(对照2.4节),它可能在协同学原理的光学计算机的构造中起着根本性作用。在激光中,不同的模出现依赖于激光阈值的临界值。它们可以由它们的光子数来标志。在微观水平上,光子数目的变化率是用非线性演化方程来描述的,依赖于模的获得、丢失和饱和。在宏观水平上,序参量相应于标志若干种光波迹的场幅度(图2.28a,b)。
这是主张一种3层的构造,数据的输入层可以用全息图映射到激光上。激光及其序参量是中间层。它利用它的模,通过自组织起着决策装置的作用。在役使原理意义上的生存的模,激发起新的特征集合。这种水平被设想为输出层。协同计算机的激光构造当然必须得到实验的证实和改进。一台协同计算机将是一种真正的远离热平衡的耗散系统。
显然,复杂动力学系统对于模拟认知行为和技术系统也很有用。人脑可以作为非线性复杂系统来建模,其动力学可以受到不动点、周期或准周期吸引子,甚至是混沌吸引子的支配。例如,实验上已经证明,混沌是一种有效的大脑再置的机制。在对兔子的嗅觉球进行了研究以后,人们对于种种气味的识别已经用神经网络趋向环状渐进状态的滞后现象进行了建模。混沌态在发散、消除先前的气味记忆时就出现了。在发散期间,特定气味作为输入推动了系统趋向相应于该气味的极限环。
混沌态的技术应用是颇为有趣的,因为混沌系统能够产生信息。人们熟知的是,混沌系统敏感地依赖于其起始条件。因此,在动力学演化过程中,两条轨迹可以在一定时间惊人地分开,甚至它们的起始条件仅仅有微小差别时也是如此。由于任何观测都只能以有限精度来实现,因此就可能存在着两种不同的状态,其间的距离要小于我们的分辨能力。在初始状态,观测者看它们是相等的。但是,经过一段时间以后,一个混沌系统就使得在初始看来等同的状态之间的差异表现出来。
实际上,人们已在若干工业领域中对神经计算机的技术应用进行了探索。例子有机器人学、航空学和宇航学(敏感和适应系统,空中导航等等)、医学(医疗数据、治疗和诊断等等的评价和控制)、工业生产(质量控制、产品优化等等)、安全技术、国防、通信技术、银行、邮政等等。技术中的复杂系统探究方式不应该被看作是对于经典AI的竞争甚或对立。在目前的技术发展状态,神经网络和经典的AI系统如专家系统看来是很有用的,并适用于不同的应用领域。对于信号、图像、语音、语音合成、机器人中感觉运动协调等等的分析和识别,复杂系统显得比经典的AI系统更为合适。显然,这些神经网络的例子并非是单个的计算机或机器人,而是指不同程度的复杂功能,它们集成在多任务的复合系统中。从拟人的观点看,由神经网络实际上管理的这些问题,可以划入“低级水平”的问题。
在本章中,以AI类型专家系统为基础的推理模型已经失败了,因为它们精确的串行的程序行为是不容出错、没有灵活性的。与专家系统和知识工程相反,自组织的复杂过程不可能由明确形式化的专家知识来进行控制。另一方面,具有推理算法的以规则为基础的系统,在所有的具有逻辑结构的问题上都是成功的。例如,与感觉运动的协调相对照,逻辑编程显得是一种“高级水平”的知识。然而,低级水平的非线性动力学系统的问题却可以具有极其高度的复杂性。当然,非线性复杂系统并不局限于低级水平的知识,正如我们在前面的章节中已经看到的那样。复杂系统的原理看来是颇为适合于为高级功能建模,例如为概念、思维、自参照状态等等人脑的功能建模。但是,神经网络的技术仍然处于初期阶段。
在当今和未来的技术中,具有多模的基于规则和复杂动力学系统的多相系统对于专门用途的研究是有意义的。一个语音理解系统的构成中,可以包含实施语音识别的神经网络和可以进行句法和语法分析的基于规则的符号模式。混成系统集成了推理和动力学技术,可能对于若干种医学目的是很有用的。例如,设想一个系统,它可以用神经网络来识别和控制医学参量,并结合了与以规则为基础的演绎系统,此种演绎系统可以从识别出的数据中对于特殊的疾病进行诊断。如同大自然中的情形,一个工程师不应该教条地局限在某个“最优”策略上,而是要有目的地发现解答,最终把若干个解集成起来,但不必是最优解的集成。
5.4神经仿生学和电子空间
我们所有实现神经和协同计算机的技术努力,其目的是什么?复杂系统探究方式将使我们能够在科学、技术、工业、经济以及甚至在文化生活中,创建一种新的计算机辅助方法论。但是我们决不要忘记,必须对技术发展的方向及其伦理学目标作出决定。今天,目标是多种多样的,包括认识论的兴趣和科学的兴趣,还有技术、经济、文化以及最后——但不是最少——还包括军事上的应用。毫无疑问,医学研究和应用必定在所有这些研究目标等级中处于较高等级上。这里要提醒持有老观念的读者,医学的目的不仅仅在于从事科学的认知和研究,而且还在于运用。运用也不仅仅是工程意义上知识的技术应用,而且也是为了医治、帮助和康复。知识和研究不过是实现医学的这种基本目的的工具,自从希波克拉底时代以来医学的基本目的就是保护生命。
人的中心器官是大脑。因此,医学上保持大脑健康的任务这种重大责任就落在了神经医生身上。他们必须将其医学治疗看作是针对整个心-脑实体。为了对人的心-脑实体提供最仔细的可能医学治疗,需要一个应用性研究来致力于拓展和提高诊断和治疗能力,包括可能的神经手术、手术计划、手术技术和术后恢复。正如我们已认识到的,人的心-脑实体是进化中最复杂的系统。包括计算神经科学、物理学、工程学、分子生物学、医学和认识论的跨学科研究纲领,对于处理这种复杂系统是必要的。这也就是为什么,一些科学家已经开始了对大脑和精神的跨学科研究纲领,包括伦理学和人类学方面。我们将其称为“神经仿生学”。
一般地,“仿生学”意味着用技术的和人工的程序和系统模拟自然功能和过程。众所周知的例子是,飞机和潜水艇的设计模仿了鸟类和鱼类身体的空气动力学。历史上,仿生学是人类的一种古老的梦想,即试图以用技术手段去模拟自然原理,从而解决复杂的生命问题。在这种传统中,神经仿生学意味着,阐明普通的技术-生物学如何去加强自然神经元的发生学和功能性质以及发展起神经修复术,制备出以硅片和(或者)有机材料为基础的类似于大脑的计算机系统。这并非一幅令人毛骨悚然的弗兰克斯坦的妖怪图景。为了推动人们投身于这些研究目标,只需要让人们看一看患有大脑肿瘤或受意外伤害的病人的凄凉情景就可以了。
神经外科是关注中枢神经系统和人脑的专门医学学科。由于大脑是人的人格和智能的生物媒体,神经外科医生不仅仅要弄清有关大脑的神经学的原理,而且还要获取人的精神及其功能的知识。神经外科已经在病人治疗上取得了进步。通过引入诊断影视程序如计算机化和核磁共振断层照相术,手术中运用微手术程序,在这方面取得了显著的成功。
不过,关于脑疾病人治疗的根本性问题仍然没有解决。例如,成人的中枢神经系统中,从功能角度看,仅仅可以换掉非常有限的受损区组织。这是由于与身体中的其他细胞截然不同,神经细胞在胚胎阶段完成以后不可能进一步分裂。只有胚胎的组织才有这样的潜能,可以使自己适合于周围的宿主组织。所以,疾病或事故引起神经细胞组的损坏往往导致永久性功能障碍。在这个应用领域,人工复杂系统及其自组织原理将受到高度关注。
医学史上曾有过用自体移植物来恢复受损的周围神经的尝试。这种方法是以这样的事实为基础的:甚至成人也有能力再生神经细胞的伸展,这种伸展从脊髓索状组织伸向末梢区域直到目标器官。因此,部分功能上不重要的敏感神经被从身体中的适当地点移走,并插入想要恢复的被打断的神经区域。然而,被打断神经纤维的再生至今还没有得到完全的理解。因此,控制移植物的生长是不可能的,移植物中包括了数百的单个神经细胞伸展——它们应到达目标器官。由于中枢神经细胞是不可能再生的,对于非常接近脊髓索状组织的中心受损,移植也是无效的。
对于周围神经移植的一个改进是在分子生物学的领域中提出来的。对于神经细胞及它们联接的细胞如星状细胞和施旺细胞的生理学和生物化学的理解,可能导致新的神经移植方法。一种中枢神经系统中组织替代的高级方法是身体中自己的细胞移植,这样的细胞在移植前已是遗传上选择过并适应了的。神经生长因子的效应、在移植源和受体大脑的目标区域之间的关系,以及许多其他分子生物学的问题都必须加以调查研究。这些方法是以遗传工程的知识为基础的。
另一个周围神经移植的可能的方法,是运用人工的而不是生物的移植体。用人工替代物来恢复神经系统的受损部分,这在医学和神经病学中都已经进行了尝试。
人工移植体配有学习算法作为自然的“蓝本”。与MCP(麦卡洛克和皮茨)网络不同,它们是工作在真实时间中的BPN(生物脉冲处理)网络。图5.26示意了这种神经-技术植入体的一般图式:学习神经网络编码感觉和运动控制信号,使之成为许多平行脉冲序列,它们被一组植人的微接触体接受,以刺激未受损的神经(图5.26a)。由神经寄存的信号,被神经网络解码,用来控制运动修补体(图5.26b)。
人们对于脊髓索状组织受损的病人,也尝试了借助于BPN系统的电刺激来增进其站立和行走功能。假定末梢组织器是未受损的,末梢神经的电刺激引起了肌肉的收缩。这是由适应性学习网络的平行脉冲引起的,学习网络对病人的感觉系统的听觉命令进行编码(图5.26a)。这个系统具有学习能力,因为它通过把感觉反馈到运动的腿上,以适应特定的病人条件。但是,此系统仍然依赖于病人的意识和说话。在下一步的研究中,脑的无意识的意向性必须由脊髓索状组织中寄存的信号进行解码。然后这些信号可以被例如无线电波送往具有适应性神经编码器的接受器中,再引起如图5.26a所示的肌肉收缩。
有一项雄心勃勃的神经技术项目,它针对的是一定类型的盲人。视网膜色点炎病人的视网膜层受到一定损坏,而视网膜是负责感觉轮廓、表面、颜色和其他的视觉特征的。受损的视网膜层由神经修补术沟通。在所谓的视网植人体的构造中,观景由镜框中的光子接受器(例如半导体)寄存,其中装备了某种适应性的神经网络。外部世界的光信号由神经网络(BPN)处理,神经网络能够学习像人眼一样为接受域建立模型。它们的信号被编码,并测距地输给诱导接受器,在此受损视网膜上排列有电极,以刺激光神经和中枢神经系统(CNS)。在更先进的研究阶段,将不再需要视镜排列,具有适应性神经网络的接受单元可以直接地植人眼中。在最初的试验中,神经技术不可能完全地取代种种视觉功能;然而,所存贮的轮廓和表面的感知,将有助于病人把握方向,这就是目前努力的目标。
如果不同肌肉组的刺激可以直接在修复神经的末端分枝处进行,而不用无机金属电极,那么就可以获得决定性进展。这就必须要使用分子装置来实现生物技术的传导性,即要使用从有机分子设计制造出的电子元件。过程控制器控制着电极并处理信息,它必须以人工神经网络为基础,才能够实现高速数据处理,满足人的行走和站立的要求。显然,这些复杂神经网络的发展需要分子生物学、计算神经科学和高技术硬件工程的跨学科合作。
人工替代受损神经功能的例子还有内耳的耳蜗移植。如果听觉神经是未受损的,通过微手术置入一个有25个极的电极作为皮质器官的代替物。听觉神经现在由适当的电极脉冲来激发,它们模拟了声音模式。脉冲是由串行的以语言知识进行了编码的微处理器来控制的。但是,在进行困难的移去听觉神经的赘生物手术中,有听觉神经受损坏的危险,结果会造成病人变聋。今天有可能把人工神经网络直接联接在中心听觉通道的区域。于是听觉可以得到恢复而不论听觉神经丢失与否。生物技术、计算神经科学和工程技术的跨学科合作再一次表明是必要的。
一般来说,神经外科手术必须要考虑到如下的临床观点:神经外科的诊断、手术计划、手术技术和神经的康复,这些是受生物技术和计算神经科学中的复杂系统探究方式支持的。在诊断方面,计算机化的断层显示过程已经开创了一个新时代。由于神经外科医生不得不处理一种进化中的最复杂的器官,手术计划和进行模拟已成为准备取得成功医治的一个基本步骤。在这一方面,复杂性意味着病人的人格特征,涉及他或她的特定病史,一定致病过程的病理,个体的解剖特征以及一个手术的可能手术后果。
一种新的方法已经用于实践。一个神经外科手术可以用CAD(计算机辅助设计)辅助技术来进行模拟。用计算机产生出一个病理解剖的三维构造,它是由一个特殊的程序来控制的。在模拟中可以发现潜在的困难,从而在实际的手术中得以避免。手术技术的不断发展将减少实际的大型开放手术。立体视镜和内窥镜技术对于减少手术引起的损伤是重要的方法。激光技术与神经外科内窥镜、术内显示过程、计算机控制的调节技术结合的进一步发展,将成为一种有广泛应用的复杂手术工具。
在波士顿的麻省普通医院的一个研究小组,已经用磁共振成像技术(MRI)揭示了人的任务激活的功能成像图,这种任务激活是在视皮层中由光刺激引起的。按时间周期地注入对比剂。采用快速NRI扫描而不用注射,甚至初级的视觉皮层成像也实现了。图5.27显示了作为神经网络的脑认知活动的真实的时间成像。这些高级的基于计算机的复杂神经网络的图像,不仅仅有助于受损的病人,而且最终使我们看见自己的思维和情感。
发展人工神经网络的最重要动力来自这样的事实:以化学元素硅为基础的高度集成电路的生产,将达到它的物理极限。这种技术以程序控制的微处理器原理为基础,不可能进一步微型化。自组织的高度平行计算和策略对于处理大脑的复杂性是必要的。因此,运用某种新的底物来作为信息处理系统的基础,就显得必要了。在此迈出的第一步是开始发展以生物元件为基础的分子电子器件。在神经细胞之间的电信号可能通过有机传导物进行传导。
关于计算神经科学,神经网络的计算机模拟可以有助于鉴明由中枢神经系统和大脑实际运用的算法。现在研究的人工神经网络模型,主要是用矢量计算机、工作站、特殊的合作处理器或移植芯片(transputer arrays)来进行模拟研究。但是,当然,复杂网络中的空间-时间平行计算的优点,在用经典计算机来进行模拟时已是全部地或部分地丢失了。只有用特殊设计的神经硬件,才能满足实时任务的要求。
在未来的神经仿生学应用中,神经芯片的训练将引起巨大复杂性的非线性作用动力学,这样的芯片可用作人的神经纤维之间的界面。芯片的设计者面临着相互联结的问题:如果成千上万的权重线路要以物理方式联接起来成一个神经元,并要作出数千个神经元,那么这个线路区域将达到这样的数量级,即线路引起的时间延迟将超过代表神经元功能块的运行时间。由于技术结构尺寸的减少受到经济上和物理上的限制,仿生学的设计者现在对相互联结问题倾向于一种构造解。首先,他们要考察神经网络的真实处理时间;其次,要考虑在何种程度上有可能偏离理想的大规模平行计算。
显然,平行计算硬件将显著增加软件的复杂性,并需要新的方法。强大的操作系统。编程工具和灵活的使用者界面都必须这样设计,使得容易与系统进行界面通信。这种任务,在由计算机科学知识程度不一的人员组成的跨学科队伍中将变得特别重要;以知识为基础的专家系统可以有助于研究小组成员,使之与仿生软件一起工作,并将它们集成进研究小组中。编程神经网络硬件将完全不同于经典的冯·诸葛曼计算机的编程。一位编程者必须要鉴明必要的网络拓扑和构造,还必须说明具有相互联结图式的神经元的行为。因此,运用多相的、混成的系统——集成神经网络系统和经典的以知识为基础的系统(在5.2节中已描述),成为神经仿生学中的现实观点。
有些人可能担心,混成的计算机系统及其复杂性的增长不经过高度的专门训练,是不可能把握的。现在的计算机系统和使用者之间的界面必须加以发展。计算机生成图像的操作,应该在“虚拟现实”中直接由语音、视觉和触觉来进行。使用者将获得这样的印象,即通过若干种与其感官相连的技术设备来获得计算机产生的现实的印象。
视觉印象是由操作者及位置感知器——它可以作为眼睛罩戴上——产生的。一个小话筒与语音识别系统联系起来,把人的命令翻译给系统。所谓的“数据手套”把手和手指的运动变换成电信号,产生出触觉并进行建模(图5.28)。
在数据手套中,在两层布之间埋设了光学纤维。它们以特定的模式把光信号变换成电信号。例如,这一技术在航空学中已经有了实际的应用。美国国家航空与宇宙航行局对于机器人的发展很感兴趣,通过模拟空间站中宇航员的手的运动,机器人可以在空间执行复杂而危险的行动。看来可能的是,数据手套原理,甚至适用于模拟整个身体的运动和反应的数据服。
这种情形对于人类的想像力有久远的影响。因此,化学中的分子建模,不仅仅可以用计算机来实现,而且也可以用引入触觉要素来实现。通过数据手套的手段,化学家可以想像抓住一个分子,感觉到它的表面并以所希望的方式对它进行操作。工程师试图通过特殊的技术系统,产生出这些接触和用力的效应。在虚拟现实中,通过数据手套进行的人的操作,必定要接受触觉到的影像客体的反馈。经验世界的复杂性,应该在所有方面被模拟。
宇航学和化学的例子中,模型的虚拟现实相应于宏观和微观宇宙中的某种真实现实。但是,图像计算机产生的奇妙世界景色,仅仅是作为电子实在而存在。在技术可能性与科学幻想之间的界限看来是模糊的。在计算机产生的“远程现实”中,人们感觉到如同影像物体。已经有人建议构造一种所谓的“家庭现实发动机”,它把使用者移入所希望的和不希望的幻想的虚拟世界。如果你愿意,你就可以与玛丽莲·梦露有性关系,或是与阿尔伯特·爱因斯坦进行讨论,这都是计算机产生的虚拟实在——预言家就这样向人们保证。科幻作家如威廉姆·吉布逊描述了由计算机产生的世界——“电子空间”,它将由人们作为惊人的幻觉而经历:
电子空间,每天由成千上万合法操作者经历的交感幻觉,无论在哪个国家,只要是学习了数学概念的孩子……都可以从人类社会中所有的计算机库数据中提取出来的数据图形表示,获得不可思议的复杂性。光线布满精神的非空间中,数据奔流激荡,如同城市中的照明,退去了……
这些见解,当然对于我们文化的发展提出了根本性的批判。人们被锁在塞满自己隐私的箱子中,或操作着由超级克雷和神经网络产生的虚拟现实,这看来是一幅如同奥韦尔的《老兄》(Big Brother)中那样的可怕图景。
除了那些伦理学问题以外,还有一些严重的认识论问题,它们是计算机产生复杂人工世界的可能性问题。在传统的认识论中,哲学家如贝克莱和休谟采取了唯我论和怀疑论的立场,认为任何手段都不可能证明外在世界的实在性。我们所有的印象也许都是由我们的大脑及其精神状态产生出来的幻象。这些迷惑人的问题,并非是如同孩子般的不诸世事的哲学家的玩笑。它们应该是推动我们去考察和分析我们的论据的有效性的动力。现代逻辑学家和精神哲学家如希拉里·普特南已经以如下的方式对这些问题进行了翻译,它使我们想起了著名的图林试验。
设想一个人被一位“邪恶科学家”动了一次手术。他的大脑已经从身体上移去,置入充满营养物的罐子中,保持大脑还活着。其神经末梢与混成的神经计算机联接起来,使此人——他的大脑——仍然获得对一切事物完全正常的幻觉。他所经历的一切,都来自计算机对于神经末梢的电刺激。如果此人想要举起他的手,计算机的反馈将使他“看见”和“感觉”到手被举起,尽管存在着的仅仅是大脑中相应的模式,而非物理的眼睛或耳朵。那位邪恶的科学家可以使这个可怜的人经历任何情形。普南特说:
这个受害者甚至可以觉得自己正在阅读这些令人愉悦的但是相当荒谬的假设:一位邪恶的科学家把人们的大脑从身体中移去,并将它置入充满营养物的罐子中,保持此大脑活着。再将其神经末梢与超级科学计算机联接起来,使此人即他的大脑获得幻觉……
如果我们的大脑以这种方式置于一口罐子中,我们能够说我们还是自己吗?普南特争辩道,我们不能。我们实际上是置于一口罐子中的大脑这个命题不可能是真的,因为它是自驳斥的。自驳斥的命题是这样一种命题,其真意味着其伪。一个逻辑上的例子是万能定律:所有的普遍陈述都是假的。如果它是真的,那么因为它的普遍性,它就必定是假的。一个认识论的例子是定理“我不存在”,如果这是由我所思维到的,它就是自驳斥的,因此,笛卡尔的论据是,人们可以确信自己的存在,只要人一想到这个定理。我们是置于罐子中的大脑这一命题就具有这一性质。
假定我们是置于营养液罐子中的大脑,传入神经末梢与超级神经计算机联接,产生出大脑的所有感觉产物。由于置于罐子中的人的大脑在很好地发挥功能,当然它就有意识和智能。但是,它的关于树、马等等的思想和形象都与实际的树。马等等没有因果联系,因为实际的树、马等等是处于罐子中的大脑的外部世界,而这些思想和形象是由我们的超级神经计算机产生的。因此,如果我们假定,我们是置于具有所有这些条件的罐子中的大脑,那么词汇“罐子”、“营养液”等等,也就不涉及一个实际的罐子、营养液等等,而是涉及由我们的超级神经计算机产生的一定的思想和形象。结果是,“我们是置于罐子中的大脑”这个句子是假的(图5.29)。
我们必须意识到这样的可能性,即我们是置于罐子中的大脑,并非被物理学、而是被逻辑和哲学排除。物理学上的可能世界——我们是置于罐子中的大脑——与物理学定律是相容的。但是,在一个思想实验中,我们甚至能够必然地导出超出物理世界的真结论。
这些特征的原因看来要归于自参照性的结构,这是心-脑系统高级能力的典型特征。在4.3节和4.4节中,我们已经论证了,自参照性可能是使得意识和自我意识成为可能的根本特征,不仅仅是对于作为生物进化产物的心-脑系统是如此,而且甚至对于采取了完全不同硬件的人工复杂系统也是如此。
图林自己主张一种人们熟知的检验,它可以确定一个如计算机那样的人工系统是否是有意识的:让一个人在一个键盘上与计算机进行交谈,以及与一个并不知道的人进行类似的交谈。如果他不能区分出哪一个是计算机,哪一个是人,那么计算机就是有意识的。简言之,一台计算机,如果它可以通过图林检验,就是有意识的。
关于“罐子中的大脑”的思想实验已经表明,图林的对话检验必定会在某些特定意义上失效。由人工系统使用的词语和句子并不必涉及到实际的对象和事件,而我们在人的自然语言中要涉及到它们。词语和句子的使用可以是由句法模式支配的,它们能够被以高度精致的方式编程为图林机。魏征鲍姆的程序ELIZA模拟了病人与心理学家的对话,可以提供这些可能性的最初线索。在此意义上,图林检验不可能排除,机器的谈话仅仅是一种类似于有智能的人的演讲的句法演示。然而,原则上不可能排除,自组织的复杂系统,通过以原型模式和对于环境的经验作为特殊参考,是能够学习它们的合乎句法的词语和规则的。从这种长远观点看,它是一个伦理问题,即我们是否想要发展那些高度自主的(耗散)系统。 冥王E书?2004
[德]克劳斯.迈因策尔《复杂性中的思维》
6复杂系统和人类社会的进化
人们怎样解释人类社会中政治的、社会的和经济的秩序的形成呢?本章首先扼要回顾了从古代以来的政治系统和经济系统的历史。对于政治的、经济的秩序的历史思想,人们常常使用相应时代的技术的、物理的和生物的概念来加以说明。在17世纪,托马斯·霍布斯力图把伽利略和笛卡尔的运动定律从力学移植到人类学和国家理论中。重农主义的绝对国家经济系统模型如同18世纪的机械装置(6.1节)。洛克、休谟和斯密的自由主义思想,具有牛顿物理学的历史背景。直到不久前,主流经济学还经常从线性数学、经典力学、热平衡热力学中获得灵感,有时还从达尔文进化论的模型中得到启发。像许多物理学家一样,经济学家相信他们的(线性)模型的精确可计算性,压抑了导致混沌的“蝴蝶效应”的可能性,并排除对于经济的长期预测(6.2节)。
要描述一种经济的动力学,就必须要有包含许多经济量的演化方程,这些量可能包括数以千计的部门和数以百万计的因素。因为一事物总是依赖于其他事物,这样的方程将是耦合的、非线性的,以能建立起经济复杂性的模型。特别是,现代高技术工业的经济行为和技术创新的效应,表明最好使用复杂系统的非线性动力学来建模(6.3节)。复杂系统探究方式的关键之处在于,从宏观的观点看,政治的、社会的或文化的秩序并非仅仅是单个意向的加和,而且还是非线性相互作用的集体后果。6.4节,在复杂动力学系统的框架中分析了复杂的社会和文化问题的例子:城市中心的生长,全球性的迁移问题和复杂组织的管理问题。该章最后考察了复杂的通信网络,提供了对世界性的“地球村”的前景以及人类由于现代高技术程序而受到的奴役。
6.1从亚里士多德的城邦到霍布斯的利维坦
在讨论了物质、生命、心-脑和人工智能的进化以后,本书最后讨论如下的问题:人类社会的进化是否可以至少是部分地在复杂系统的框架中加以描述和建模。在社会科学中,人们通常在生物学进化和人类社会历史之间作出严格的区分。原因在于,国家的、市场的和文化的发展被假定是由人类的意向性行为所指引的,即人类的决策是以意向性和价值为基础的。
从微观的角度看,我们实际上观察到的是一个个有着自己意向、信念等等的个体。但是从宏观角度来看,国家、市场和文化发展却大于其部分的加和。政治、社会、经济秩序的形成,表现为是由自组织步骤引起的,从而提示了复杂系统中的某些相变过程。然而,为避免任何种类的自然主义或物理主义的还原论,我们应该考虑人类社会特有的意向特征。在3.4节和4.3节中,已经在复杂系统探究方式的框架中为动物群体的演化建立了模型。诸如社会秩序、社会行为组织、巢穴的构造等等宏观结构,都用复杂系统的吸引子来解释。但是,尽管动物群体和人类社会有共同的起源,存在着共同的特征,它们之间的复杂性差异数不胜数。因此,在后续的叙述中,诸如“进化”、“本性’嘟不能限制在分子、鱼类、蚂蚁等等的机制中。它们意味着某种新的复杂动力学,对此进行的分析必须考虑到社会哲学的长久传统。
柏拉图和亚里士多德是最早试图解释人类社会的政治、社会和经济秩序形成的哲学家。他们分析了成为西方社会和国家起源的古希腊城邦(polis)的结构。在古希腊典籍中,城邦(xoYL&)例如雅典,是一个小城市共和国,可与后来文艺复兴时期意大利的佛罗伦萨和威尼斯的行政区相比较,或许还可以与现代瑞士市级的行政区相比较。古希腊的城邦不大,但是在政治上经济上几乎是自主的国家和社会。古希腊的哲学家提出的一种理想的模式或多或少由这些历史实例实现了。
柏拉图区分了几种转变的阶段,它们是一个城邦在实现和谐社会的最终目标过程中必定要经历的阶段。在第一个阶段,公民必须要学习种种技能和职业、商业和贸易,以满足整个社区的种种不同需要。柏拉图相信,城邦的公民必须要根据其天赋不同实现不同的专业化。公民为了合作工作必须组织起来。柏拉图提出,通过自发的自组织,他们的产品和服务的交换实现某种工作和需求的平衡。这种平衡的经济状态的特征是“公平”价格。
但是,柏拉图的田园诗般质朴合作的世界当然是不稳定的。人们力图追求自身的利益和获得好处。他们是自私的、不正派的,充满着嫉妒,由情欲所驱动的。于是就产生了冲突,就必须组织起政治权力以避免城邦的毁灭。柏拉图提出一种由精英、最智慧者(“哲学王”)管理国家的贵族政治。其政府的作用就是要使充满着冲突起伏的整个系统保持着某种平衡态。众所周知,柏拉图不相信民主,因为在他看来,没有受过哲学教育的普通人是无法认识真正公平的理念的。柏拉图相信,在变化着的短暂的表面世界背后,存在着一种永恒的伦理价值等级。因此,也存在着一种人们必须意识到的客观的价值尺度,以避免混沌、保持国家系统的和谐。
显然,柏拉图在捍卫一种集权式的政治权力系统。用系统理论的语言来说,即有一种中心化的处理者,控制着系统元素的所有行动和反应。如同科学世界中的拉普拉斯妖,这里有一个柏拉图的政治神话,即由理想的、聪明的和善良的政治家领导着一种和谐平衡系统。在一个像古希腊城邦的小城市中,在某些批判性气氛下,柏拉图的最佳“哲学王”的贵族政治也许是正当的。然而,真实的历史经验已经表明,甚至有教养的、有智慧的政治领导人也难逃滥用权力的诱惑。在今天的世界上,柏拉图的精英贵族政治犹如以知识为基础的复杂社会中的专家的权力。但是,在现在信息和计算机技术高度发展的条件下,柏拉图的聪明和善良政治家的神话容易转变为奥韦尔的恐怖剧中具有万能控制力量的“大兄弟”。
涉及古希腊城邦的第二位著名哲学家是亚里士多德。他假定,人在本性上是希望求生的社会动物。而且,他们是政治动物,因为他们希望生活得美满幸福。亚里士多德相信有机发展的人类社会,是由其成员的社会本性和政治本性所推动的。当城邦的社会和政治形式得以实现时,社会的和政治的动力学就达到了一种最终的平衡态。亚里士多德把过程作为这种社会的和政治的动力学的本质。
不过,自然的动力学过程并非被想像为一种因果的机械运动,而是被想像为一种像植物和动物那样的有机物生长,从最初的种子的状态开始,目的是最终实现其完整形式的终态(对照2.2节)。于是,在人类是由他们的社会本性和政治本性的冲动所推动的意义上,亚里士多德的社会模型是一种自然主义模型。但是,只有为了生存的目的而进行社会组织的这种人类本能才与动物是共通的。人类以其政治本性是要实现一种公正社会而与动物相区别。亚里士多德的著名观点是,人类是追求科学和哲学真理的理性动物,也是追求社会公正的政治动物。
公正意昧着一种完美的自然状态,如果社会是按照其平衡和谐比例来安排,犹如阿基米德天平的静态平衡一样(图6.1)。因此,在亚里士多德社会中的经济平衡是由“公平的价格”来度量的,这样的价格是物品和服务的“自然”价值。经济学也就成为亚里士多德的关于公正和国家的道德哲学中的一部分。他区分了交易公平(justitia commutativa)和归属公平(justitiadistributiva),前者涉及私人交换和公民事务,后者涉及私人和国家的关系。亚里士多德的经济公正和政治公正模型成为中世纪的主导思想。显然,在那个时代,它与亚里士多德的自然概念是一致的。
机械自然现是由伽利略、笛卡尔和其他一些人奠基的,它导致了牛顿宏大的经典物理学系统。托马斯·霍布斯在其名著《利维坦或物质,共同财富的形式和权力,基督教会和公民》(1651)中,提出了一种机械论的近代社会和国家的模型。霍布斯生活在一个发生着巨大政治变化的时期,即中世纪结束和近代发韧的时期。中世纪传统的君主政治和贵族政治已经失去了其宗教合法性。在血腥的内战中,欧洲社会和国家陷人毁灭和混乱之中。科学上,伽利略的机械论新方法及其在物理学中的成功给霍布斯留下了深刻印象。因此,他力图运用这种方法以发现一种近代社会的机械论模型,其中没有陈旧的传统形而上学来损害它在科学和政治中的合法性。
在伽利略力学中,有一种把一个系统(“物体”)分解成为其独立元素的分析或分解方法,以及一种再把这些独立的建筑块装配或统一成整个系统的综合方法。简言之,整体就是其部分之和。显然,伽利略描述了关键性的叠加原理,奠定了线性的机械论世界观。实际上,一个如同钟表一样的机械系统,能够分解成诸如嵌齿轮和其他机械部件那样的独立元件,这些元件装配在一起构成了其完美的功能。
霍布斯力图把运动定律从力学转移到人类学和国家理论。人们被假定为由情感和情绪推动的,如同肉体是由机械动力推动的一样。主要的情感因素是自我保护和求生个体的本能。在霍布斯看来,追求生存的本能是人的一种自然权力,并导致对其他人的暴力和侵犯。因此,在霍布斯的人类社会的自然状态中,就存在着一切人反对一切人(bellum omnium contra omnes)的永恒斗争,而没有任何平衡态。
另一方面,具有复杂需要的人们只能在社会中生存。因此,他们的理性支配了一种追求和平的第一自然定律。为了实现“和平定律”,就需要第二定律,即需要有一种社会契约。霍布斯指出,在这种社会契约中,所有的公民都必须把他们的自然权力转移给一位“利维坦”(“Leviathan”),唯有这位绝对君主才有权实施政治权力,统治国家。用现代语言来说,霍布斯的社会契约使得国家的权力垄断具有合法性,以保持社会处于某种绝对平衡。
霍布斯把绝对君主权定义为制订社会契约的“所有个体之和”。显然,这种思想是伽利略的叠加性或线性的力学原理的运用。霍布斯著作的标题页上(图6.2)表明,利维坦的身体是单个个体组成的巨大复杂系统,这说明了霍布斯的线性政治原理。
从混沌的自然状态到政治有序和平衡状态的“相变”,是由全体公民的社会契约来实现的,正是在这种意义上也就是由自组织来实现的。但是,利维坦的终态却是一个集权化的确定论系统,其中对公民不存在任何的政治“自由度”。霍布斯将物品和金钱的经济循环比作血液的循环,血液循环是由英国医生威廉姆·哈维发现的。心脏是推动整个循环的一台机械泵,收入和消费也就被比作血液的泵入和泵出。
这种机械的经济观点,后来由法国科学家、重农主义经济学派奠基人弗朗索瓦·魁奈(1694-1774)进一步阐述。魁奈最初是路易十四宫廷里的一位医生,受到社会机体经济思想的影响,他写了关于人类身体的“动物经济”的著作。笛卡尔的机械世界观是重农主义的主导哲学。
于是,经济系统就被描述为由齿轮、发条和钟锤组成的机械钟装置。一台时钟就是一个已经预先编好程序功能的顺序执行系统。相应地,重农主义经济是不能自我调节的。农业的进展,被重农主义经济看作推动力,被比作一台时钟中的发条和弹簧。经济生产被比作时钟中的复合运动。结果,经济的前景也就仅仅由调节类似于时钟的经济循环来保证。
重农主义者用一张特殊的表使得财富在不同社会阶层——农民(“生产阶层”)、商人(“不生产阶层”)和地主——中的流通形象化。在图6.3a中,经济周期开始于地主阶层将他们收入的地租(假定是2亿金路易)进行分配,左栏表示地租中给予农民以购买食物和农产品的份额(1亿金路易),右栏表示给予商人,以购买货物的份额(1亿金路易)两项收入使农民和商人两个阶层能够再生产新的物品。随着农民用商人的产品,商人也用农产品,金钱也就在相应的阶层的两栏之间进行流通。这种流通形成了一种齿状曲线,直到获得了表中的底部给出的净利润。
但是,为了开始新的经济循环,净利润的消费导致新的收入进行新的消费成为可能,这就会再生产出净利润。调节流通和净利润的重复再生产的机械过程,用带有滚动球的时钟来说明(图6.3b)。时钟借助滚动球沿着斜面齿状途径向下滚动来计时。经过一个流通周期以后,球再提高到系统的顶部,这种过程就重新开始。显然,在一个流通周期中净利润的分配可以比作此机械装置中的滚动球的齿状途径。经济流动周期的周而复始相应于把球提高后再沿着齿状途径向下滚动。
重农主义经济学家运用了笛卡尔力学框架的物理模型。他们的因果决定论中排除了任何种类的自我调节或个体自由,完全相应于绝对主义政治系统。公民被归结为一架政治和经济机器中发挥功能的元素。
6.2斯密的经济学和市场平衡
重农主义以笛卡尔力学背景来设计他们的经济模型,而亚当·斯密则与他的伟大先驱艾萨克·牛顿爵士的经典物理学有关。在笛卡尔的力学中,所有的物理事件都还原为相互作用的元素之间的接触效应,如同钟表中的嵌齿轮或圆球之间的撞击。因此,笛卡尔派物理学家构造出往往是不可观察的假定机制。例如,光的折射作用想像成如同微小玻璃球一样的小球之间的相互作用。碰撞和冲力定律在笛卡尔的物理学中是基本性的。
牛顿用他的名言“决不作假说”来批评笛卡尔的力学。他的万有引力定律是用数学方法从他的力学公设推导出来的,所作出的预见通过实验经受了经验确证。但是,他提出来用以解释虚空中万有引力的超距效应的假定的传递机制,则是不可观察的。
在牛顿的天体力学中,物体在一个由不可见的万有引力确定的动力学平衡系统中运动。动力学平衡中自由运动个体这一物理概念,相应于政治权力独立的自由经济和社会中的自由主义思想。与自由主义思想不同,笛卡尔的自然时钟机械装置则表现为,对应于把公民作为嵌齿轮的绝对主义的国家机器。
著名的英国哲学家约翰·洛克(1632-1704)不仅影响了牛顿物理学的认识论和方法论,而且还影响了近代民主和政体的政治理论。他追问,为什么人会自愿放弃他在自然状态中的绝对自由,并使自己服从于政治权力的控制。洛克认为,在自然状态中享有财产权是非常不安全的、不保险的,因为在无限制的自由状态中其他人总想将它从他的手中夺走。因此,自然状态是不稳定的,将转变为某种政治力量的平衡态。在洛克看来,从自然状态向有政府的社会的“相变”是由人们保持自己财产的意向所推动的。
不过,政府并不意味着无自由的绝对君主机制。它是一种均衡的状态(平衡态),其中像立法和执法都是独立的政治权力。由于法律是由作为社会的代表机构的议会来制订的,因此就有对其公民的基本反馈作用,公民只不过放弃了他们的自然的自由,以保护他们自身和财产要求:“所有这一切不会导致其他而只将导致人民的和平、安全和公共的善”。历史上,洛克的民主思想,权力分离,财产权以及宽容的思想,主要影响了美国和法国的政体。
如同在认识论中一样,与洛克相比,伟大的苏格兰哲学家大维·休谟(1711-1776)在政治理论中更富有批判性、更为精确。在认识论中,他教导人们,人类的意识是由感觉和情感的联想所制约的,它们可以为外部的经验所加强或减弱(参见4.1节)。所以,甚至在牛顿物理学中也不存在绝对的真理,只会有或多或少可能有用的方法。类似地,也就不存在如公正地决定着人类行为的永恒伦理价值。伦理观念只能由对于个体或公共的有用性来加以评价。总之,政治政体是否合法,也就只在于它们是否对于社会有用,是否被社会所接受。因此,休谟就成为了功利主义伦理学和政治哲学的先驱。他的朋友和苏格兰同乡亚当·斯密,很可能是受到了他的人类社会中自私行为的怀疑论人类学的启发。
斯密的名著《国富论》(1776)通常被誉为一门独立学科的诞生。然而,斯密是一位道德哲学的教授,牛顿是一位自然哲学的教授。事实上,斯密试图把伦理学、经济学和政治学统一起来,牛顿则力图将其物理学嵌入宇宙学甚至宗教框架之中。在他的《道德信念论》中,斯密分析了同情心在人类中的作用。在他的《国富论》中,人的自私自利行为被假定为经济学的根本推动力。
在这两本书中,斯密都试图把牛顿方法运用到伦理学和经济学中去。他把牛顿方法描述为,科学家制定了“一些基本的或证明了的原理,从这里出发,我们能够解释多种现象,并把它们联系在同一条链条之中”。与休谟相类似,斯密也不把科学的起源归功于人对于真理的热爱,而归结到一种素朴的渴望,即最大限度地“迷惘、惊奇和敬畏”。人类生命的伟大目的是要追求均一、恒定和持续地致力于改进人的生存条件。总之,人的自私倾向于追求最大的福利功能。
按照牛顿的“决不作假设”的格言,斯密强调,人类的自私决非是经济学家的一种理论构造,而是经验的事实。自私是单个人的强大的、自然的推动力,因此也就是一种人权。但是,若干个人的微观利益的相互作用,通过市场机制造成了共同的宏观福利效果。下面是摘自《国富论》的两段名言:“我不比那些倾心于交易公共产品的人们懂的更多。”以及“我们所盼望的晚餐,不是来自屠夫、酿酒商或面包师的仁慈,而是来自他们对自己利益的关心。”
市场机制是由供给和需求来调节的,供给和需求推动着竞争者的微观利益成为市场平衡中的宏观福利效果以及“国家的财富”。按照这样一种机械论的观点,借助通过某种“经济妖”或机械发条,微观利益被拉动到共同的平衡宏观态。按照牛顿的方法,斯密把引导着微观利益的“看不见的手”比作天文学中的“看不见的”万有引力中的超距作用。显然,斯密把经济描述成为一个其中发生着许多微观利益处于相互竞争之中的复杂系统。它们的相互作用的动力学,是一种竞争的自组织过程,其终态是实现供给和需求之间的平衡。
物品的价值是由金钱来度量的。当然,金钱的度量不可能不小心使用。有必要区别由市场机制实现的“市场价格”和产品的“自然价格”或真实价格。经济学家不得不去发现一种“标准价值”,以能校正金钱的价值。于是,斯密已经旨在建立一种以价值理论为基础的政治经济学。要衡量社会产品,就需要价值。图6.4说明了斯密的供给和需求的自组织过程,其中的反馈图式中,r是对于物品的需求,c是供给,m是市场价格,n是自然价格。
但是,斯密并没有像亚里士多德那样以诸如公正这样的伦理理想为背景来引入“公平”价格。他的探索是以像自私这样的人类本性的事实为基础,来分析“国家财富”的“本性”和“原因”。关于物品的自然价格,斯密和早期的古典经济学家如戴维·里卡多就试图发现诸如黄金、谷物和劳动的绝对价值尺度。
在里卡多看来,这种共同尺度应该由他的劳动价值理论来解释。里卡多跟斯密一样,熟悉经典物理学的一般思想。因此,他相信,经济学的某些结论“如同万有引力原理一样确定无疑”。随着历史的脚步向前迈进,经济和政治的问题都发生了变化,里卡多的增长、地租和劳动理论都受到了19世纪初他自己时代的历史条件的影响。最明显的是,出现了像马尔萨斯已经考虑过的要养活不断增加的人口所带来的经济问题。
约翰·斯图特·穆勒(1806-1873)这位英国的哲学家和经济学家,对经济学的方法论有着巨大的兴趣。他把“政治经济学”定义为推演分析的公理系统,以假定的心理学前提以及对人类行为的所有非经济方面进行的抽象为基础。这些抽象可比作如同力学中的摩擦那样的扰动因:
扰动因有其自己的规律,如同被扰动的原因有其自身的规律一样;从这些扰动因的规律出发,扰动的本性和数量也就可以预见……特定原因的结果于是就可以加入一般原因的结果之中或从中减去。
在上面的引语中,穆勒显然描述了经典物理学中的因果性原理,它是使长期预报成为可能的基础:相似的原因引起相似的结果。因此,穆勒的经济学方法论就与拉普拉斯经典物理学精神是一致的,假定在近似知道初始条件的情况下,运用经济学定律就可以近似正确地作出预测计算。而且,穆勒的公理假设还定义了一种简化的经济行为模型,而非复杂的经济现实。
于是,穆勒就成为了第一位明确以虚构的“经济人”为基础的经济学理论家,处于整个复杂性之中的真正的人不见了,而原先这是斯密研究的主题。这个一般性的经济人假说扩大了某种经济性功利功能,其经验基础是某种经验,即以对穆勒同时代的人进行反省和观察为基础,但是它并非是从特定的观察或具体的事件之中推导出来的。与此类似,牛顿的一般性万有引力定律也是由对于落体或运动天体的某些特定观察从经验上证明是合理的,而不是从这些事件中推导出来的。穆勒的方法论与19世纪物理学中对形式化系统和模型的新见解相吻合。
现代数理经济学的先驱们如瓦拉斯和帕里托传播了物理学的数学方法在经济学中的应用。这两位思想家都是所谓的洛桑学派的代表性人物。经典理论已经明显受到物理数学概念的影响。他们或多或少地谈及经济力量和机械平衡之间的大体相应。实际上,数理经济学的先行者们主要是从力学和热力学中借用词汇,例如,平衡态、稳定性、弹性、膨胀、充气膨胀、收缩、流、力、压力、阻力、反应、运动、摩擦,如此等等。
1874年,瓦拉斯接受了斯密的如下思想:消费者和生产者行为最大化就将导致经济的所有产品和因素市场在供给和需求总量之间的平衡。从瓦拉斯以后,一般平衡理论就成为了主导概念,它要求证明在一种经济的数学模型中存在平衡态。数理经济学家力图把复杂系统的元素从其环境中分离出来,用外源参量进行说明。不过,如果外源参量自身依赖于整体系统的影响,那么,把系统与环境分离并忽略掉实际存在的反馈,从而建立起适当的经济模型就是可能的。
一般而言,一些古典经济学家力图通过标志线性和机械性模型的某些特定的假设,来减少经济实在的复杂性。首先,他们相信理性经济人用这种虚构来看待人们的每一行为。例如,市场中的这种经济人的个体行为,应该作为一个整体被分离出来。人们的行为可以用从个体行为中抽象出来的一般行为模式来描述。于是,就有了这样的假定,人的个体行为如同遵从一定运动数学定律的机械系统中的元素一样,是规则的、可预见的。如果起始条件和环境是已知的,是可精确测量的,那么就可确信,环境之中的个体行为就犹如气体中的分子一样,其行为是确定论的。
假定了一个社会是由其成员的加和性行动构成的,经济模型的线性也就遵从叠加原理。叠加原理意味着,社会作为一个整体,与个体行动的加和没有两样。显然,线性模型是从不可预见的、非理性的个体行为的抽象,是从环境制约的抽象,是从个体与其行动之间的非加和性(“非线性”)和协同相互依赖性的抽象。
这些线性的方法论原理,完全相应于拉普拉斯的物理学世界观。它们对今日的主流经济学仍然具有强大的影响,尽管本世纪的物理学自身已经经历了一些重大的革命,例如产生了以不确定性关系为特征的量子力学。但是,海森伯的不确定性关系是依赖于普朗克常数的量子力学算符之间的一个特定关系的结果,它看起来似乎与经济世界全然不相干。然而,薛定谔和海森伯的量子形式仍然保持着线性(对照2.3节)。事实上,经典的线性动力学系统具有非常规则的行为方式,从而允许作出精确的预见。而一个非线性的模型却表现出混沌的行为,对其作出长期预见是不可能的,因此被看作一种蹩脚的经济学工具。
在20世纪,数理经济学家已经越来越放弃洛桑学派的物理主义了,该学派曾试图把经济系统比拟为某种经典物理学系统。经济学家已经在力图找到他们自己的基本数学工具。动力学模型的线性假设已经由于技术上的原因而被看作是正当的。这种正式态度在约翰·梅拉得·凯恩斯1938年给罗衣·哈罗德的一封信里有如下的表述:
在我看来,经济学是逻辑学的一个分支,是一种思维方式;而你没有坚定地拒绝试图……将其转变成一种伪自然科学……按其模型及其选取模型的艺术,以模型与当代世界相关联的做法来看,经济学是一门思维科学。
例如20世纪20年代末受特征的经济崩溃的影响,凯恩斯和其他人都强调经济系统不具备自动自我调节能力。“资本主义的不稳定性”成为所谓的凯恩斯主义中的一个常见的说法。于是,就提出了这样的建议:要借助特定的政策例如财政主义工具从外部来使经济系统稳定化。线性模型被新古典主义理论所特别采用,人们再一次集中在对平衡经济学的研究上。
非线性探究方式,主要是受到了那些对于古典平衡经济学理想感到不满意的经济学家的青睐。因此,凯恩斯学派的学者们在并不熟悉非线性的数学方法的情况下,经常对线性的平衡理论框架提出批评。
约翰·冯·诺意曼和奥斯卡·摩根斯腾的《博奕论和经济行为》(1943),开创了一个非线性数理经济学的新时代。线性编程、运筹研究,以及甚至数理社会学都受到这本名著的影响。在《博奕论》一书中,冯·诺意曼和摩根斯腾合理地假定,行动中的个人总是按照某种收益性来最大化自己的利益。一般地,使一类可能的行动a1,……,am和一类可能的状态s1,……,sn配成数对(ai,sj),式中1≤i≤m且1≤j≤n,收益uij是其一个映射。可能的收益uij构成一个(m×n)矩阵。
例如,人们已经提出来若干种在不确定性条件下进行决策的合理性标准。不确定性意味着不知道可能收益的概率。主要运用的是所谓的最大最小收益标准。在这种情况下,每一种可能的行动ai都有相应最小收益值的矩阵元,即收益矩阵(uij)中第i行ui1,……,Uin中的最小值。于是,规则要求:选取的行动使其矩阵元取最大值。简言之,最大最小值规则选取这样的行动:最不利情况下的受益最大化。该规则可以非常容易地、机械地运用于收益矩阵。
哲学家卡尔·加斯塔夫·亨佩尔想像出来如下的一个例子。在两口缸子中,装有尺寸相同的一些球,它们无法通过触摸而加以区别。在第一口缸子中,小球是铅球和铂球;在第二口缸子中,小球是金球和银球。游戏人被允许作为获取免费礼物从其中的一口缸子中取出小球。游戏人不知道缸子中的小球的分布概率。估计铂球价值为1000,金球价值为100,银球价值为10,铅球价值为1。
最大最小规则认为应该选取从第二口缸子中获得小球。在这口缸子中,最吃亏的情况是获得银球,而在第一口缸子中最吃亏的情况是获得铅球。显然,最大最小规则相当于一种悲观主义的世界观。在游戏中,游戏人假定了一个充满着敌意的对手。于是,最大最小规则建议采取一种最有用的行动。
而一种乐观主义的态度则相当于所谓的最大最大收益标准。游戏人坚信,每一次可能的行动都将得到最好的可能结果。因此,看来合理的是采取获得最好可能结果的行动,这至少可以跟其他行动获得同样好的最有利结果。在上述例子中,最大最大规则建议选取第一口缸子。
一位谨慎的游戏人也许不愿意选取最大最小规则。但在另一方面,如果知道了对手怀有敌意,最大最小规则才是合理的。一些数字的例子是支持这种解释的。对于两种可能的状态s1,s2,以及两种可能的行动a1,a2,收益矩阵如图6.5a所示。
最大最小规则建议采取行动a2。甚至把数字1减少到非常微小的值例如0.000001,而数字100放大到非常大例如10[15]时(图6.5b),最大最小规则仍然建议采取行动a2。对于一位假定了一位绝对敌意的对手的游戏人,这种决策实际上是合理的。在任何情况下,对手都将力图阻止游戏人实现最大收益的状态。否则,采取最大最小值规则就将是不合理的,因为a1将会是更好的行动。如果状态s1实现了,游戏就不得不放弃收益增值,因为它太小了。在状态s2的情况下,他将以行动a1获得一个非常大的利益增值。
为了判断这种决策是合理的,萨维奇引入了所谓的最小最大冒险标准。他主张,用冒险价值rij的矩阵(图6.5c)来取代收益uij的矩阵(图6.5a)。为了获得第j列中最大收益价值,必须把冒险价值rij加入到收益价值uij中。
在矩阵6.5a中,第一列的最大收益价值是1,在第二列中是100。于是,冒险矩阵就如图6.5c所示。
最小最大冒险规则要求:选取使得最大冒险最小化的行动。由于a2的最大冒险的价值是99,a1为1,看来合理的是选取行动a1。当然,也只有在一定的特殊条件下这个规则才是合理的。还有许多其他的合理性标准。
接下去是所谓的悲观乐观标准。它建议在悲观的最大最小规则和乐观的最大最大规则之间获得一种答案。假定对于行动ai,收益ui1,……,uin的最小值是mi,最大值是Mi。让a是一个常数,使得0≤a≤1成为乐观悲观矩阵元。于是,行动a1相应有a矩阵元ami+(1-a)Mi。悲观乐观规则倾向于具有较大a矩阵元的行动。当然,只有给定了一个特定的a,才定义了一个特定的标准。这些例子表明,合理性的绝对标准是不存在的,存在的只是一类相应于在一定条件下的不同乐观程度和不同悲观程度的标准。
冯·诺意曼和摩根斯腾的《博奕论》一书中,考虑了作为个人或群体之间进行竞争或合作的相互作用结果的社会或市场的稳定性。在许多情况下,他们对于实际的经济、社会和心理复杂性采取了过度的简化。每一位游戏者只能恰好确定他的可能行动以实现某些状态和可能的受益。一般来说,博奕论采取了线性(叠加性)原理假设,在一个社会(游戏)中的许多个人的复杂相互作用被归结为若干个人的许多简单相互作用的加和。
于是,对两人游戏的研究在博奕论中占据着重要的地位。在一个事件中,游戏人1选取行动a1、游戏人2选取行动a2,被表示为数对(a1,a2)。在此事件中,游戏人1的收益是u1(a1,a2),游戏人2的收益是u2(a1,a2)。一类重要的游戏,其特征是在每一事件中,两位游戏人的收益恰好相反,即u1(a1,a2)+u2(a1,a2)=0(“零和”博奕)。任何的合作都被排除了。于是,最大最小规则就显得是合理的,如果没有关于对手的合理性的特定信息。在其他情况下,合作常常是合理的。
数学上的根本性问题是,在此博奕中存在着平衡点。如果完全没有合作,就以如下方式定义两位游戏人的可能行动的平衡点。一个事件(a1,a2)是游戏的平衡点,如果游戏人1的所有行动a1的收益值u1(a1,a2)大于或等于u1(a1,a2),以及如果游戏人2的所有行动a2的收益值u2(a1,a2)大于或等于u2(a1,a2)。
假定游戏人2选取了行动aa,而游戏人1试图使收益最大化,那么他就可以选取行动a2;反之亦然。平衡点是稳定的,如果游戏人知道他或她的对手也处于平衡点并且没有理由要改变其行为。显然,这种平衡定义没有考虑任何动力学方面。但是,实际的社会或经济行为却是由时间中的复杂动力学所确定的。交易循环是众所周知的经济动力学的例子。于是就提出了问题:这些动力学是否受到平衡态的吸引,以及这些平衡态是否是稳定的。一般来说,博奕论并不考虑“蝴蝶效应”,即不考虑小的行为失误有时会引起总体的危机甚至引起混沌。
冯·诺意曼和摩根斯腾的博奕论并不完全拘泥于线性数理经济学的传统,它还发展起来经济福利理论的思想。一个理性的社会被假定为选取了帕雷托优化(Pareto-optimal)的利益分配。如果没有对于其他个体福利的减少就不可能增加这一个体的福利,这种利益的分配被称为是帕雷托优化的。满足这种弱帕雷托优化福利条件仍然是不充分的,还必须考虑到潜在的联合。博奕论中的合作解理论,主要是追随了福利经济学、交际手段,以及往往惯于社交的自私政治家的思想。数学上,福利经济学的政治和社会框架的公正、无偏见以及平等竞争等概念的确定,都被归结为某种对称性原理。
博奕论是一种精确的数学理论,它在经济学中的应用往往被估价过高了。其局限性是它对社会作了典型的线性假设。然而,博奕论是一项了不起的数学发明,它主要是由冯·诺意曼提出来的。值得注意的是,在本书所涉及的本世纪几乎所有科学领域的发展中,约翰·冯·诺意曼都是一位中心人物。他曾致力于程序控制的计算机、自动机理论、量子力学和博奕论的发展。而且,他还对自然科学和社会科学中的跨学科数学模型深感兴趣。所有这些辉煌的发展都主要是由线性原理支配着。但是,冯·诺意曼还是最先认识到自复制和自组织的重要性的科学家之一。他的元胞自动机理论就是一个著名的例子。
6.3复杂经济系统、混沌和自组织
从方法论的观点来看,主流经济学往往受到线性数学、经典力学、平衡态热力学模型的启发,有时也受到达尔文进化论的启发。古典经济模型中已经假设了一种理性的经济人,理性经济人通过成本最小化、利益最大化来追求收益最大化。这些理性的角色被假定通过在市场上交换商品而发生相互作用,市场是通过一定的价格机制来实现需求和供给之间的经济平衡的。
要描述经济的动力学,就需要有包含许多经济量——也许来自数千个部门和数百万角色——的演化方程。经济学如同其他领域一样,一切事物都依赖于其他事物,为了尽量地模拟经济复杂性,这种方程就将是耦合的、非线性的。但是,甚至是完全确定论的模型也会产生出高度不规则的行为,这样的行为是不可能作出长期预测的。经济学如同气象学一样有同样的缺陷。
在发现数学混沌和蝴蝶效应之前,人们相信有可能精确地作出长期的天气预报。作为一名计算机的先驱,约翰·冯·诺意曼认为,拥有了充分多的关于全球气象的数据,并有了超级计算机,就可以对于长期的、大范围的天气作出精确预报。在数学上他并没有错,因为在线性数学框架中,他如同经典的天文学家一样地正确。但是,流体和天气的实际长期行为惊人地不同于这些模型。
人们怎样来处理天气和经济学中的复杂性呢?气象学中,爱德沃·洛仑兹已经提出了一种非线性动力学模型,其中由于内在的(“外在的”)扰动就会产生出混沌行为(对照2.4节)。类似地,解释经济演化的复杂性就有两种可能的方式。主流方式是假定线性的模型,其中作出某些预先的特设、难以解释的外在冲击。而非线性方式放弃了过于简化的预设有外在冲击的线性假说,并力图通过其内在的非线性动力学来解释实际上的经济复杂性。在一些情况下,非线性作用非常弱,线性近似并不造成根本性错误。
在经济学史上,20世纪30年代的经济大萧条引起了试图从理论上解释经济的不规则性。但是,那些模型(例如卡耐基和汉森-萨缪尔森模型)都是线性的,难以解释振荡现象的形成。因此,经济学家们就假定,外部的冲击引起了所观察到的振荡。假如那时经济学家对于数学的发展更熟悉一些,他们就会早些了解到非线性的数学模型会导致循环限制,从而得出解答。
经济学家们起初只知道不动点吸引子的稳定平衡。彭加勒把平衡态推广到包括以极限环形式进行的平衡运动。但是,对于像洛仑兹模型(图2.21)中的混沌吸引子,既没有不动点,也没有不变运动,而是一种永不重复的运动。然而,它也是一种有边界的运动,一种非游荡集合,将一定的动力学系统吸引到某个动态平衡的终态。
历史上,20世纪的经济以其增长过程中发生着引人瞩目的崩溃中断为特征。例如,20世纪30年代(大萧条)和70年代(石油危机)。对于增长的结构,要特别关注创新和技术进步。成功创新的扩张,在经验上已经由逻辑斯蒂函数很好地表示出来,本书中在2.4节已经引入了这一函数。递归的表示中可以把整数t看作时间项,增长因子a>0。起初,人们对于创新是全然不熟悉的。然后,随着它被人们接受,它就达到了它的最大扩张速率。再后,随着创新方式完全地结合进经济中,对它的吸收过程就慢慢地减速了。
所形成的曲线示意在图2.22中。对于a≤3,我们获得了某个不动点吸引子,这示意在图2.22a中。对于更大的a,结果形成了一种振荡(图2.22b和图2.24b),然后是一种混饨运动(图2.22c和图2.24c)。对于a>3,周期数随着a的增加而成倍增加(图2.23a),最后它完全变成了混沌(图2.20b)。
创新和经济产出之间的相关如图6.6的模型所示。最初的输出q被看作是平衡的,随着增长速率△k的增加,输出也在逐渐增加。随着创新到达饱和状态,△k也减少到零,输出q跌落到最初的水平。于是,创新刺激出某种繁荣,但也就引出了随后的衰退。创新可以是节省劳动力的。如果每输出单位的劳动输入降低20%,就会引起失业。
人们假定新思想的增长是指数式的,像舒伯特那样的经济学家主张,在一次创新冲动的尾声就将开始一轮新的创新冲动。然后,如果大致以每年4%的速度发生经济系统连续地起作用和技术概念连续地生长,那么就会激起新的一轮繁荣和新的衰退,如此等等。对于经济循环理论,创新是至关重要的,因为在一次萧条中是没有任何的新投资基础的,而新的投资又是引出新的扩张所必需的。
一些新的思想平稳地产生出来。当足够多的思想积累起来以后,就会引进一组新的创新。它们最初的发展是缓慢的,然后随着方法的改进而得以加速。逻辑式发展标志了这种典型的创新轨迹。引入一种创新必须要有某种超前投资。投资刺激了需求。增长的需求促进了创新的传播。于是,随着所有的创新都已经被充分发掘,减速过程就将导致零增长。
熊彼特把这种现象称作创新“游泳”。在他的三循环模型中,第一个短循环相应于资本循环,创新在此不起作用。下一个较长循环相应于创新。熊彼特承认历史统计学的显著性,并把长周期波动的证据与诸如蒸汽机、炼钢、铁路、轮船和电力这些最重要的创新联系起来,注意到它们完全地结合进经济中需要30-100年。
一般地,他描述了以“集群”形式发生的技术进步引起的经济进化,并在逻辑斯蒂框架中来解释。一次技术集群被假定为以循环方式把一种平衡态转移为一种新的不动点。所形成的新的平衡,其特征是更高的真实工资、更高的消费和产出。但是,舒伯特的分析忽略了一个根本性问题:有效的需求决定着产出。
从历史上看,20世纪30年代的大萧条促成了提出经济的商业循环模型。不过,最初的模型(例如汉森-萨缪尔森的模型和郎伯格-米兹勒模型)都是线性的,因而也就需要外在的冲击来解释其不规则性。标准的经济方法论为这种传统进行辩解,尽管循环分析在数学上发现了奇怪吸引子以后就已经成为可能。在非线性系统框架中,重新表述关于20世纪30年代的大萧条的传统线性模型并不困难。
米兹勒模型是由两个演化方程来决定的。在第一个方程中,产出的变化率q正比于实际资本S与所希望的资本S’之间的差。所希望的资本正比于产出。第二个方程中涉及资本的变化率s,其产出q小于需求。需求正比于产出。由这两个演化方程决定的动力学复杂系统,将产生出简单的其振幅不断增加的谐运动。
如果以某种非线性方式将这个系统扩展,就会导致另一种不同的行为。第三个方程中考虑到净公共剩余和赤字的反常行为。目的是要产生出有若干年周期的循环。运用所谓的茹斯勒带,提出了一种数学模型。人们得到了一条莫比乌斯带,它是自上而下翻转后只给出一面的带子(图6.7a)。追随一条轨迹,由外圈扩展到右上方。然后,它折叠起来,并随着向下运动而收缩为一个内圈,如此等等。图6.7a给出了一个两维的投映,显示了这两个循环。轨线倾向于聚集在其间的空的空间。如果将此模拟继续下去,这些带子就变得越来越稠密。
图6.7a是一个简单而著名的混沌(“奇怪”)吸引子的例子。尽管其中每一轨迹都是精确地由演化方程所决定的,但它却是难以长期计算和预测的。在蝴蝶效应的意义上,起始条件的微小偏离,将引起轨迹途径的巨大变化。图6.7b示意了态空间中一条为期15年的输出轨迹,对此已在计算机实验中选择一些参数进行了模拟。图6.7c示意了作为相应的时间系列的发展。
这种高度飘忽不定的行为完全是由内在系统产生出来的,没有任何的外在冲击。在经济学中,时间系列的不规则性通常是用外在冲击来解释的。但是,它们仅仅是武断的预先假设,因此是可以解释任何事物的。从方法论的观点看,其中有混沌吸引子的混沌内在模型表现得更令人满意。然而,内在的非线性模型与带有外在冲击的线性模型都必须严肃地取自经济学,并在经济学中受到检验。
显然,一个经济系统包含了许多相互关联的和相互独立的部分,既有内在动力学也有外在影响力。一个国家的经济越来越受到世界经济运动的作用。在一个经济系统内,也有具有特定动力学的多种市场。它们受到循环的影响,例如,每年的太阳循环就决定着农业、旅游业或燃料市场的状况。因此,铁业循环和建筑循环也都是人们熟知的经济例子。因此,内在非线性并受外力冲击波的系统才是现实的经济模型。受扰动的混沌吸引子或一种超混沌,给人留下了深刻印象。正是经济事件具有飘忽不定的特征,给经济人员带来了严重的困难,他们不得不面对不可预见的未来而进行决策。
在2.3节中,我们已经看到,自组织的复杂系统可以是保守的或是耗散的。在图2.14a,b中示意了它们的不同类型的吸引子。一些为人们熟悉的自然科学中的保守的或耗散的模型都已经运用于经济领域。1967年,哥德温提出一种保守动力学模型,以使得19世纪的阶级斗争思想精确化。他考虑了一种由工人和资本家所组成的经济系统。工人将其全部收入都用于消费,而资本家则将其全部收入都储蓄起来。哥德温运用的是作了某些修订的洛特卡和沃尔特拉的捕食者-被捕食者模型,那个模型已在3.4节中作了描述。
哥德温的保守模型支持了这样的观点:资本主义的经济将处于不断的振荡之中。因此,轨迹描述了封闭轨道,如图3.11b所示。哥德温的模型受到了批评,批评者认为它只是表面上的,因为该模型并未直接涉及资本家和工人的职务收入份额或他们群体的大小。但是,主要是由于它的保守特征,使得哥德温的模型看来在经济上是不现实的。该模型把互不相干的一组假设放在一起,而假设之间的相互影响没有得到反映。
因此,加入“经济摩擦”假设,就使这个模型更为现实了。在生物学中,耗散的洛特卡-沃尔特拉模型已示意在图3.11c中,其中有一个吸引子。一个耗散系统总是具有吸引子或排斥子,其形式包括不动点、极限环或奇怪吸引子。由于耗散系统具有不可逆的时间进化,任何种类的回溯预测都是排除在外的。
现实中,人们不可能将一个动力学系统与其他动力学系统割裂开来考虑。因此,在2.2节中,我们研究了耦合的吸引系统,例如两个时钟(图2.11a,b)。组合系统的态空间由一个环形圆纹曲面代表(图2.11c,d)。整个系统的动力学,由环形圆纹曲面上的轨迹和向量场的相图来表示。
一个耦合振荡系统的经济模型,可以由国际贸易来提供。设想一个简化了的只有总投资和储备的单种经济的宏观经济模型,其总投资和总储备依赖于收入和利率。这个系统的动力学依赖于关于收入的演化方程,收入由市场上对物品的过度需求来调节,第二个演化方程是关于利率的方程。这些方程以模型中产生出内在振荡的方式构成了一个非线性振荡子。
3种经济的相互作用,例如,可以用3个独立的二维极限环来加以描述。如果这3种经济都处于振荡中,该系统的总运动就构成了一种三维环形圆纹曲面的运动。非线性振荡子的耦合可以理解为对三维环形圆纹曲面上的自主经济运动的扰动。这种耦合程序已经应用到了几种经济实例中,诸如国际贸易模型、商业循环模型和独立市场。
当允许自组织的经济系统受到政治干预的影响时,就出现了至关重要的实际政策问题。在某些情况下,市场是不可能按照福利标准来发展的。如果让经济自由放任,它就可能出现涨落波动的特征。如果不考虑经济增长的复杂性和非线性,政策措施可以对这样的倾向产生相反的效应。
对于经济突变带来的巨大社会和政治后果,已经在凯恩斯主义和新凯恩斯主义的框架中讨论过若干种政策措施。例如,当代的财政政策可以被看作一种动力学控制。它应该可以减少经济涨落的幅度。但是,战后的经验已经表明,希望把涨落减少到零是不可能的,也不可能保持就业率不变。而且,一项好的政策总是需要相当的时间来收集数据、分析结果并提出相应的立法和行政措施。结果是,任何政策当它起作用时可能就已经过时了。因此,在复杂的非线性的经济世界中,一项政策措施可能会是完全无用的。
例如,当假定的经济动力学及其政策干预的时间途径过于简单时,凯恩斯的收入政策就可能是无效的。在复杂系统的框架中,经济政策措施可以被解释为对于振荡系统施加紧急的外部作用力。因此,它不可能排除掉经济系统出现混沌现象。在物理学中,受迫振荡是人们所熟悉的。例如,如果一个像钟摆那样的动力学系统(图2.5)处于振荡中,并且受到外力的周期性影响,那么,由于振幅不断增加、振荡总体衰减以及完全的无规则性,其结果就可能是不可预见的。
从古典经济学到现在,商业循环理论的目标一直是建立起具有规则涨落的经济系统的动力学。按照线性力学的观点,实际的商业循环可以用规则系统来建模,对其可以再加上随机的外部冲击,而这种冲击又必须或多或少用适当的经济学假设来说明。当然,对于一个模型,当它的基本性质是由外部力量来决定的,这些外部力量又没有合理的经济学解释,这样的模型就是很难令人满意的。如果一个实际的系统是非线性的、混沌的,可能影响其经济动力学的外部作用力的进一步的信息也就可能是多余的。从方法论的观点看,按照奥卡姆的格言entia non suntmultiplicanda sine necessitate[无必要就不增加(理论)实体〕,他的著名剃刀应该用来切除这些多余的关于经济学的预先假设。
从一个实际工作人员的观点来看,他究竟是面对一个随机的线性过程还是一个混沌的非线性过程的问题,这是一个离题的问题。这样的两种系统都使得他难以作出精确的预测。由于混沌模型敏感地依赖于起始条件,任意精确的数字计算机也不可能计算出这种系统的长期的未来演化。轨迹将指数地发散。另一方面,他却相信,面对着系统的过于复杂的行为,随机的外部冲击是可以放弃的。
然而,具有混沌时间序列的非线性系统却并不排除局部的预见性。如果非线性系统的吸引子可以加以重构,那么数字技术就允许以足够高的精确度对系统的短期进化作出预测。短期经济预测可以是复杂系统理论在经济学中的一种有趣的应用,不过这也仍然处于其婴儿期。
对于经济学模型来说,经济学从一开始就遇上了经验检验和确证的严重方法论问题。这与自然科学中可以进行任意多次的测量并进行实验室实验形成了鲜明的对照,经济的时间序列必须包括时间单位如天、年、季度或月份的数据。典型的标准的时间序列长度是由数百个点构成的。因此,对于经济模型的有限的可靠性就已经具有了经验的理由。当然,经验式的实验基本上是排除在外的。
因此,关于内部经济动力学的适当知识,至少有助于建立数学模型,对其未来的发展可以用计算机实验进行模拟。如果政治家和管理者的经济和政治环境的假设得到了实现,他们就至少可以获得可能经济图景的“相图”。对于高度敏感的非线性系统的定性洞察,至少有助于防止反应过度的人们把该系统从不稳定点推向更不稳定,甚至也许是推向更大的混沌。
经济学中的非线性模型的主要根据,是由最近的经济增长的结构变化给出的,这种结构的变化是新领域的技术发展引起的。传统的经济学理论假定了收入递减。某种物品生产和投向市场的越多,则其生产和销售就将变得越困难,获利就将越少。人们的相互作用是由负反馈来决定的,负反馈通过对经济变化引起的每一作用的反作用来稳定经济。
在一种存在着负反馈的经济系统中,价格和市场份额的平衡就可以实现,也就可以预测。一个著名的例子是20世纪70年代发生的石油危机。20世纪70年代原油价格的突然上涨,使得人们开始节省石油,寻求可替代能源,于是又导致了石油价格在20世纪80年代的下降。在传统的经济学中,平衡即是一种对应于特定环境中的最佳结果。收入递减定理意味着存在着某个平衡点。其中有收人递减的负反馈的经济系统,对于传统的诸如农业、矿业和大宗产品等部门是典型的。
但是,以高技术知识为基础的经济部门却获得了收入递增。高技术产品像计算机、软件、飞机、化学产品和电子产品的发展和生产,需要复杂的研究、实验、计划和设计过程,需要高额投资。但是一旦高技术产品投向了市场,生产能力的扩大却是相对便宜的,收入也就开始增加。因此,现代高技术产业就必须作为收入递增的正反馈的动力学模型来描述。
具有正反馈的系统,不止一个平衡点,而是有若干个平衡点。它们不必是最优的。如果某种产品在市场上恰好具有竞争优势,市场主导者就将长期处于市场主导地位,甚至会在不必改进产品的情况下扩大其优势。现代高技术产业的许多例子表明,相互竞争的产品在开始时可以占有大致相等的市场份额。但是增加了某一特定产品市场份额的微小涨落决定着它的最后成功。常常会出现这样的情况,市场上的最后主导者从技术观点看却不是最好的。
这些效应是不可能在传统的线性动力学框架中得到解释的。但是在非线性系统中它们却是人们所熟知的。图6.8表示在正反馈情况下两种技术的竞争。某些市场份额的轨迹显示在凸面上。一种技术越是支配着市场,它就越容易获得更大的市场份额。由于主导市场的位置是由随机的涨落引发的,因而它是不可预见的。在图6.8中,左边的曲线表示最后取得支配地位的技术A。在其他两种情况下,在起始的涨落之后最终取得市场支配地位的是技术B。
这些经济模型的非线性的动力学是由最初的随机涨落和正反馈决定的。显然,可能途径的分叉是一种由最初的随机涨落导致的对称破缺,这也是在复杂物理学系统中为人们所熟悉的。读者只要回忆一下加热流体出现的定态对流卷(图2.20b),其中对流卷方向是向左还是向右就取决于起始的随机涨落。
除了耗散系统以外,保守系统中也会出现对称破缺。我们考察一下旋晶中偶极子当温度下降时发生的自组织(图4.9a)。在热平衡态,依赖于起始的随机涨落,旋晶变成指向同一方向的排列。市场份额的动力学表现出遵从同样的方式发展。很多例子表明,因为起始随机涨落而制约了技术的发展方式。在19世纪,相邻的铁路公司在大范围中采取了相同的规范。而标准的规范只是历史随机事件的结果,而不是由于技术上的理由。
这些复杂系统的行为由简单的演化方程所决定,如同铁磁旋晶系统发生对称破缺一样。图6.9示意了铁磁体中磁偶极子的演化。每一偶极或每一磁极都可以是向上(北极)或向下(南极)。一个偶极可以与其最近邻发生作用。在高温下,偶极子的方向是随机的。如果温度降低,基本的极性就会按相同方向排列起来。由于这些演化是一种对称破缺,就不可以预见在平衡终态究竟会实现哪一种方向。图6.9b示意了与此类似的铁路公司采取规范的自组织过程。
在经济和社会领域中,正反馈的自我增加机制是非线性复杂系统的典型特征。例如,我们可以考察,加利福尼亚的圣克拉拉县为何会成为著名的硅谷。在20世纪40年代和50年代,一些著名的人物(如休利特、帕卡特和肖克利)在斯坦福大学附近建立了一些电子公司。这些先锋造成了高技术工程师和产品的集中,成为一个吸引子,最终900多家公司随之应运而生。在开始时,出现的是一些随机的涨落,它们有利于圣克拉拉县。因此,硅谷是如何出现的,从非线性角度来看,这并非奇迹,而是合乎规律的事件。但是,从随机性来看,它产生于圣克拉拉县就是一个奇迹。
今天,自我增强的机制决定着高技术的国际贸易。美国和日本之间的汽车工业的竞争可以从这种框架中得到解释。起初,日本的工业向美国市场上提供小型轿车没有受到美国汽车工业的任何抵制,美国的汽车工业传统上专注于生产大型轿车。日本的汽车工业获得了市场份额,并降低价格和提高质量。于是,正反馈使日本工业侵入了美国市场。
对于这些非线性的市场效应的洞察,可以对政治决策产生重大影响。传统的观点是假定某种收入恒定或下降,政府相信开放市场,力图阻止垄断,并希望工业将支持研究和技术发展。他们相信某种不变的世界性市场价格的平衡,拒绝任何的补贴或关税的干预。对于一个收入递减的经济系统,他们的政策是正当的,但是对于收入递增的以高技术为基础的经济部门,这就可能是危险的。
不断增加着收入的运行机制改变着国家之间的竞争平衡。甚至最强大的国家经济,也可能在重要技术上错过发展。20世纪60年代在西欧和美国之间的技术差距(例如在计算机领域)是一个著名的冽子。技术标准或常规通常都是由正反馈来确立的。如同前述的铁路规范的例子,英语作为航空导航的标准语言,FORTRAN作为一种计算机语言,某种特殊的螺纹,如此等等,往往都是不可变更的,即使一种替换技术或规范可能会更好。它们获得了过多的市场份额。但是,最初的优越性并不能保证长期生存。
非线性系统具有若干个可能的平衡态,但没有最终的稳定态。非线性经济即使在最初是均匀的,但由于它们的高度的敏感性和起始条件的微小偏差,也就不可能选择同样的发展道路。因此,正反馈的非线性经济不可能像计算机那样进行编程和运行,因为它的长期进化是不可预测的。复杂系统理论可以有助于设计一个经济动力学的整体相图。但是,对于找到经济福利的局部平衡,经验和直觉有时比科学知识更有帮助。对于处理高度敏感的复杂系统,政治家们必须具有高度的敏感性。
6.4复杂文化系统和通信网络
在社会科学和人文科学中,人们常常把生物进化和人类文化的历史进行严格的区分。主要原因在于,民族和文化的发展显然是由有意向性的带着其态度、情感、计划和理想的人类行为所引导的,而生物进化系统则假定是由无意向性的自组织过程所推动的。从微观的角度看,我们用他们的意向性和愿望观察人类个体。甚至在像动物生态这样的生物系统中,个体也有某种程度的意向性行为。
复杂系统探究方式的关键点在于,从宏观角度看,政治、社会和文化秩序的发展,都不仅仅是单个意图的加和。亚当·斯密已经认识到,经济财富和福利的分配并不是由社会的一个个面包师和屠夫的善良愿望所施舍的。个体的自私自利的意向性可能会与集体利益相冲突。然而,他们的(非线性的)相互作用却通过“看不见的手”(斯密)或“理性的狡黠”(黑格尔)实现了集体的平衡态。
由意向性行为的个体组成的非线性系统,也许比例如物理的原子系统或化学的分子混合物更复杂。在4.3-4节中,意向性行为和意识的建模,是被看作一种复杂神经系统的自参照整体状态,由神经元的非线性相互作用造成的。以不同复杂程度出现的集体有序现象是所有非线性系统内在的共同特征,这样的系统并不一定要与意识相联系。作为人类社会的集体秩序的政治状态,尽管其形成可以用具有意向性行为的有意识的人们的非线性相互作用引起的相变来建模,但是显然并非黑格尔错误地认为的那样有某种意识或智慧。
因此,在复杂系统的数学框架中,“进化”概念并非专指特定的生物进化机制。在复杂系统中,所谓的演化方程描述了其元素的动力学,这些元素可以是基本粒子、原子、分子、有机体、人类、公司,如此等等。宽泛意义的另一方面是复杂性概念自身。在社会科学的情景中,有许多方面的复杂性,图6.10中示意了其中的一部分。
在本书的复杂系统的数学框架中,复杂性首先是定义为一种非线性,这是混沌和自组织的必要条件,但不是充分条件。另一方面,线性意味着叠加原理,用通俗的说法是“整体只是其部分之和”。复杂性的第二个重要方面是由算法的结构来定义的,这在5.2节中已经讨论过。计算机科学中复杂性理论提供了一种复杂性程度的等级,例如依赖于计算机程序或算法进行计算所需要的时间。由于人们常常用计算机图形来模拟非线性复杂系统,它们的算法复杂性就可能描述为它们的自组织能力。在元胞自动机理论中已经探讨了这种关系(对照5.3节),其中为不同种类的自组织复杂系统进行了建模。
在社会科学中,高度工业化社会的复杂性主要是由大量的公民及其关系、组织亚结构及其相互依赖性所构成。我们应该记得,在一个复杂系统中,造成形成集体(协同)有序时元素的巨大数目不是根本性的,非线性相互作用才是根本性的。读者也许还记得,具有混沌轨迹的天体3体问题就是可能的答案。
在复杂系统的数学框架中,对于人类历史和社会文化发展的物理学或生物学还原论,在任何情况下都是不恰当的。社会和文化发展的模型,必须联系其特定的约束和限度来进行讨论。一个重要的方法论问题是,如何提供对于这些模型的经验检验和确证。因此,对复杂文化系统进行计算机辅助模拟已成为关键性工具,籍此可以对其动力学提供新的洞察,从而对我们的决策和行动大有帮助。
历史上,对于社会科学中的非线性问题的兴趣可以追溯到托马斯·马尔萨斯。他指出,因为人口指数地增长而食物供应只能线性地增长,人口将超过食物供给。1844年,威霍尔斯特修订了该指数方程,指出人口增长的速率正比于人口生产以及资源总量与现存人口对资源消费量之差。他的著名的具有平衡吸引子特征的逻辑曲线,被运用于人口统计学、经济学和社会科学的其他许多场合。它提供了一种可能的一系列分叉和相变(包括混沌)。
由沃尔特拉和洛特卡描述的捕食者-被捕食者生态系统的演化,是另一个被应用于社会科学的模型。例如,洛特卡-沃尔特拉模型有助于我们理解农业社会的出现。因为人类能够进行学习,他们就能够改变他们与环境相互作用的程度,使得这种作用快于大自然遗传进化的反向措施。人类社会,为了生存只有不断地改进其狩猎能力,从而消灭被捕食群体。然后,社会也将被消灭。结果是,捕食者和被捕食群体都将灭绝。但是,农业使得被捕食者的生产速率增加了。于是,人类群体就增加了,并能够在某种平衡态稳定下来。
生物系统的进化是受其基因制约的。达尔文进化论中,新个体的出现是通过对突变体的自然选择实现的,其中突变是自发产生的。在较高等动物的群体中,由于模仿,出现了新的行为变化和适应的可能性。社会发展起来诸如法律系统、国家、宗教、贸易等等特殊的组织机构,从而使得后代的行为变化得到稳定化。
复杂系统探究方式提供的基本性洞察是,无论是遗传进化还是行为进化,都不需要诸如进行指导的神的意志、生命力那样的总体程序或者某种总体的进化优化策略。基因的生存或者总体行为模式的形成,都可以用组成系统的个体之间的局域相互作用来加以解释。我们可以更清楚地表述为,这是一个宗教或政治世界观的问题,即究竟有没有诸如上帝、历史或者进化那样的“总程序”。在复杂系统的方法论框架中,这些假设对于作出解释是不必要的,在奥卡姆剃刀及其理论概念经济的意义上它是多余的。
显然,诸如生物有机体、动物群体或人类社会这样的非线性系统,已经进化得越来越复杂了。我们现在的社会,与亚里士多德的城邦或重农主义者的政治系统相比较,它是一种以高度组织结构复杂性和信息网络连接为特征的社会。在19世纪,赫伯特·斯宾塞已经提到,不断增加着复杂性是进化的一般特征:“进化是结构和功能复杂性的增加……恰好是……平衡过程……”斯宾塞仍然是在热平衡的热力学框架中来进行论述的。
在远离热平衡的热力学框架中,存在着不只一个平衡不动点,而是存在着分为不同复杂程度的吸引子的等级,从不动点开始,直到具有分形结构的奇怪吸引子。因此,无论是在生物进化中,还是在社会文化的进化中,都没有某个固定的复杂性限度,只是存在不同复杂程度的吸引子,它们代表着一定相变阶段的亚稳平衡,如果一定阈值参量得到实现,这些亚稳平衡就是可以被打破的。社会的结构稳定性也就与这些不同复杂程度的吸引子相联系。
传统的关于自稳定、自调节系统的功能主义观点,源于技术上的恒温装置。它有助于我们理解社会为何保持不变化,但是却不能解释它们为何发生变化,平衡为何被打破。在复杂系统的框架中,对于社会的动力学,是按照不断地与其环境交换着物质、能量和信息的耗散系统的相变来理解的。社会的组织制度是一种耗散结构,它们可以产生出来,并可以在特定的阈值条件范围内保持木变。例如,在新石器时代的村落中,当已建立起来的社会结构已不可能保证食物供给时,农业制度就发生了从干旱农业向灌溉农业的转变。
在工业化社会的历史上,我们可以找到强弱程度不同的经济涨落,它们可能引发由社会制度的崩溃和新的社会制度的形成。例如,1922年美国的经济萧条是相对温和的,时间也不长,因而没有产生社会结构的变化。与此相反,美国历史上1929年的股票市场的崩溃却是一场真正的蝴蝶效应,引发了1933年的大萧条。这一危机使得许多公司发生了财政灾难和大量的失业,而不能被已建立起来的社会组织制度来加以运作。现成结构的临界参数被超过了。新的组织制度出现了,安全和交易委员会、联邦储备保险组织和劳工管理局就应运而生,以克服萧条的影响,并防止未来商业循环中的过大波动。这种美国社会的凯恩斯回应,以罗斯福总统新经济政策而闻名。
但是正如我们从新古典主义经济学家和第二次世界大战战后的社会发展经验中认识到的,公共福利的优化策略可能引发管理官僚制的自动力学,它使得经济动力衰退,与起初的善良的愿望相反。对系统的结构稳定性,过度的反应,跟毫无反应一样危险。另一方面,政治革命史表明,社会可能失去其稳定性,实现新的政体、组织体制和社会结构,当然,其延续性没有任何保证。
返回书籍页