什么罪行的严重程度可以与朱莉的早慧程度相匹配呢?
常春藤大学的毕业学分积点多高才能与朱莉的阅读水平相匹配呢?
上述问题并不是很难回答,对吧?此外,可以肯定的是与你同处一个文化领域的人作出的匹配与你的回答会很相近。我们发现,人们根据朱莉的阅读年龄这一信息预估她的学分积点时,他们通过一种范畴向另一范畴的转换来回答这个问题,并且选出了相应的学分积点值。我们也明白为什么这种利用匹配进行预测的模式从统计学角度来看是错误的,尽管对于系统1来说这很正常,但对于统计学家以外的大多数人来说,系统2也可以接受这种做法。
思维的发散性让我们作出直觉性判断
系统1任何时候都可以同时进行多种估算,其中有些估算是持续不间断的常规评估。只要眼睛是睁开的,你的大脑就会对视觉范围内呈现出的立体事物进行评估,这种评估是对这些物体的形状、空间位置和特性等因素的全方位评价。这一评估活动的运行或对违背期望的事物进行持续监督的行为都是无意识的。与这些常规评估不同,其他评估行为只有在需要时才会进行:你不会持续评估自己有多高兴或多富裕,即使热衷政治,你也不会一直不间断地评估总统的执政前景。偶尔的判断是主观自愿的,这种判断才是有意识的。
你不会不由自主地数出每个读到的词的音节数,但如果你选择这样做,就能数对。不过,想要使刻意计算的结果很精确并非易事:我们计算的结果往往比自己想要的或需要的要多。这种过量计算的过程就体现了“思维的发散性”。如同想用散弹猎枪瞄准一个点是不可能的一样(它射出的子弹是分散的),想要让系统1完全执行系统2的命令且不做多余的工作也很难,这一点与散弹枪很相似。我很久以前从书上看到的两个实验就表明了这一点。
其中一个实验让受试者听几对词,若他们听出这些词是押韵的,要马上按下一个键。下面两组词都是押韵的:
VOTE,NOTE
VOTE,GOAT
在你看来,区别很明显,因为你看到了这两组词,而受试者只能听到单词。“VOTE”和“GOAT”押韵,但它们的拼写不同,虽然受试者听到了这两个词,但他们也会受到拼写的影响。如果两个词的拼写不同,受试者听出它们是押韵的速度就会慢些。尽管要求是比较声音,但受试者同时也对两者的拼写进行了比较,而且与声音无关的不匹配因素妨碍他们迅速作出判断。刻意回答一个问题却引起了另一个问题,这一行为不仅没必要,而且对主要任务的完成也很不利。
在另一项实验中,受试者听了几个句子,如果句子是真实的,就要马上按下一个键,如果是假的,就按下另一个键。对以下这些句子的正确回应是什么呢?
有些路是蛇形的。
有些工作是蛇。
有些工作像监狱。
这三个句子从表述上来看都是错的。不过,你很可能已经注意到了第二个句子比另两个句子错得更明显,实验也证实了这一本质性不同。之所以存在这种不同,是因为第一句、第三句两个难句从比喻角度看是正确的。这次又是要进行一个预估活动却引起了另一个预估行为,而且,正确答案在冲突中更明显,但这个与回答并不相关的冲突却影响了系统的正常运行。在下一章中我们会发现,思维的发散性和强度匹配结合起来就可以解释为什么我们对很多自己不很了解的事情能够作出直觉性判断。
示例:判断问题
“评价一个人是否有吸引力是一种基本判断,不管你是否想这样做,这种评价都是不由自主进行的,也会对你产生影响。”
“我们的大脑中有一些线路,这些线路可以从脸型来推断一个人统领大局的能力,即他看上去有些领导气质。”
“如果强度与罪行不匹配,惩罚则不可能公正。就像是你可以用光的亮度来与音量的大小匹配一样。”
“关于思维的发散性,有这样一个明确的例子:他被问及是否认为这家公司财力雄厚时,他想到的却是该公司令其钟情的产品。”
….文.…;
….人.…;
….书.…;
….屋.…;
….小.…;
….说.…;
….下.…;
….载.…;
….网.…;
第9章 目标问题与启发性问题形影不离
关于你的思维活动,有一点值得注意,即你很少被问题难倒。的确是这样,偶尔你会碰到这样的问题:17乘以24等于?你无法立即想到这个问题的答案,但这种让人目瞪口呆的时刻毕竟是少数。当大脑处于正常的状态时,你几乎对眼前出现的所有事物都会有直觉和想法。对一个人不是特别了解时,你就知道自己是不是喜欢他;你也不知道自己为什么会相信或者不相信一个陌生人;你没有作过调查分析,却能感觉到一家企业一定会成功。有时,对于一些无法完全弄懂的问题,你也总能作出答案,而回答的依据是什么,连你自己也说不清道不明。
找个相对简单的问题来作答
我简单描述了如何从复杂的事情中提取直觉性的观点。对于有难度的问题,我们总是很难快速找到令人满意的答案,此时系统1就会找到一个相关问题来回答,这个问题比原来的问题更易作答。我把这种回答一个问题而绕开另一个问题的做法叫做“替代”。我还将采用以下术语:
“目标问题”就是你想要作出的评估。
“启发式问题”就是你绕开原来的问题去回答的那个更简单的问题。
“启发”这一术语是指协助寻找各种难题的恰当答案的简单过程,虽然找到的答案常常并不完美。这个词和希腊语eureka(意为“找到了”)是同根词。
我和阿莫斯在共同工作的早期就想到了替代这一概念,它也是启发法和偏见研究法的核心内容。我们自问:人们在对可能性没有任何了解的情况下,是如何成功作出可能性判断的呢?我们得出的结论是,人们一定不知道通过什么方式将不可能完成的任务简单化了,由此,我们开始研究他们是如何做到这一点的。我们的答案是,当人们按照要求对可能性作出判断时,他们实际上是对其他的事情作了判断,并且认为自己已经完成了判断可能性的任务。遇到很难的“目标问题”时,如果脑海中马上出现了一些与之相关联且容易回答的“启发性问题”的答案,系统1通常便会采取这种“替代”的做法,采用替代问题的答案。
用一个问题替代原来的问题是一个解决难题的好策略,乔治·波利亚(George Polya)在他的经典著作《怎样解题》(How to Solve It)中提到了替代问题:“如果你无法解决某个问题,就去解决另外一个简单点的问题好了一去找这个简单的问题吧。”波利亚的启发法是系统2有意实施战略性决策的过程。不过,我在本章讨论的启发法案例并不是精心挑选的,而是思维发散性造成的结果,是我们锁定问题答案控制能力不强的结果。
请看下面的“目标问题”。它们都很难,在给出合理的答案之前,你肯定会先处理些其他难题。幸福的含义是什么?未来6个月会有哪些可能的政治动向?其他金融犯罪的标准量刑是什么?候选人的竞争有多激烈?还有哪些环境因素或者其他原因需要考虑?想要真正解决这些问题根本不可能。但是你不要受制于完全理性的答案,经过认真推理之后,可以找到启发性的替代答案,尽管这种方法有时很好用,而有时却会导致严重的错误。
目标问题启发式问题
你愿意为拯救濒危物种捐多少钱?
你这些天对生活满意吗?
今后6个月里总统受欢迎的程度如何?
欺骗老人的理财顾问应受到何种惩罚?
这位竞选总统的女士能在政治道路上走多远?
启发式问题
想到垂死的海豚时,我的情绪波动有多大?
我现在的心情如何?
总统现在有多受欢迎?
想到金融骗子,我会有多生气?
这位女士看上去像是个政治赢家吗?
思维的发散性可以使懒惰的系统2摆脱很多繁重的工作,快速找到难题的答案。“启发式问题”相对于“目标问题”更容易让人产生联想并作出回答。你对海豚和金融骗子的感觉,你现在的心情,你对自己看好的竞选人政治能力的印象,或者总统现在的立场等,都会立即呈现在你的脑海中。启发式问题给每个有难度的目标问题都准备了一个现成的答案。
上述说法中存在一定的不足:没有指出答案应该与原始问题存在关联。例如,我对垂死海豚的感觉一定要用钱来表示,这一点让人费解。而系统1的另一项能力,即强度匹配,可以解决这个问题。情感和捐款都是按强度分级的。我对海豚的感情可能很强烈,也可能很淡薄,而我捐款的数目会与我对海豚的感情强度相匹配,我脑海中出现的钱数就是匹配量。相似的强度匹配可能适用于所有的问题。例如,不同竞选者的政治表现可以从很糟糕到非常出众。同样,衡量政治成功等级也包括“她在首次竞选就会出局”的最差表现和“她将来会成为美国总统”的最佳表现。
思维发散性的自主过程和强度匹配可以使能映射到目标问题的简单问题有一个或多个答案。有些情况下会有替代答案,系统2会认可这一启发式答案。当然,系统2也可以拒绝这个直觉性答案,或者通过整合其他信息来改变它。但是,一个懒惰的系统2往往会遵循最省力法则,不经检验就认可某个启发式答案。你不会被难倒,也不必非常努力,甚至都没有注意到自己其实答非所问。此外,你也许都注意不到目标问题很难,因为你的头脑中会很迅速地闪出一个直觉性答案。
立体启发法:远处的物体看上去更高大
一些德国学生作过的一项调查堪称替代研究的最佳案例之一。这些年轻人完成的调查包括下面两个问题:
你最近觉得幸福吗?
你上个月有多少次约会?
实验人员对这两个问题的答案的关联度很感兴趣。那些回答自己有很多次约会的学生会比那些约会次数少的人更幸福吗?令人吃惊的是,答案是否定的,两个答案的关联度几乎为零。显然,学生在评价自己的幸福感时,首先想到的并不是约会。
另一组学生也看到了这两个问题,但次序正好相反:
你上个月有多少次约会?
你最近觉得幸福吗?
这一次的结果完全不同。在这种顺序下,约会次数和幸福感之间的相关度能达到心理测试的最高水平。其间发生了什么呢?
原因很明确,这就是替代作用的典型案例。约会显然不是这些学生生活的重心(第一次调查中,幸福和约会并不相关),但当实验者要求他们回想自己的浪漫生活时,他们确实有情感上的回应。有多次约会的学生想起了自己生活中快乐的事,而那些没有约会的学生想起的都是孤独和被拒绝的情节。因此看到第二个问题时,由(第一个)约会问题引起的那些情感就在大家的脑子里徘徊,影响他们对这个问题的回答。
上例中体现的心理活动和图9中的体型错觉带给人的心理体验很相似。评价“最近的幸福感”这种任务并不常见,也不简单,需要仔细思考之后才能给出恰如其分的回答。但是,提到约会情况,这些学生就无须努力思考了,因为他们脑海中早已有了相关问题的答案。这个相关问题就是:他们对自己的恋爱生活满意程度如何。他们将被问及的问题替换成了另一个自己心中已经有了答案的问题。
在这个实验中,我们同样可以采用与错觉研究相同的做法,可以问一问:这些学生感到困惑了吗?他们是否真的认为这两个问题,他们被问及的问题和他们回答的那个问题,是相同的?当然不是。学生不会一下子把浪漫时光和生活混为一谈,如果让他们说说对这两个词的理解,他们肯定会说浪漫时光和生活不是一回事,但其实他们需要回答的问题并不是两个概念是否相同,他们的问题是最近是否感到幸福,于是系统1就用已有的答案来作答了。
约会的案例并非特例,如果这些参与实验的学生先看到的问题是与父母或金钱的关系,而后马上看到那个关于幸福的问题,也会发生同样的情形。在两种情况下,满足感在特殊情况下影响了关于幸福感的表达。任何影响人心情的重要情感问题都会产生同样的效果。眼见即为事实。当人们评估自己的幸福感时,他们思维状态的作用就显得非常突出。
情感启发式:因为喜欢,所以认同
一旦加入情感因素,结论对论证的主导作用便会最大程度地凸显出来。心理学家保罗·斯洛维克(Paul Slovic)提出了“情感启发式”的概念,认为人们的好恶决定了他们的世界观。你的政治倾向决定了你对各类论证的看法,即它们是令人信服的还是难以服众的。如果你对当前的医疗政策还满意,就会相信该政策能给自己带来很多好处,而且你相信在这个政策下,花同样的钱能做更多的事。如果你对其他国家采取鹰的态度,就很可能会觉得其他国家相对弱小,更有可能对自己的国家俯首帖耳。而如果你的态度像只鸽子,就会觉得它们更强,不会轻易受到牵制。你对辐照食品、瘦肉、核能、文身或摩托车等事物的态度会左右你对这些事物的感受,它们是惠及生活还是充满风险。如果你对这些事物通通都不喜欢,很可能会觉得它们对你而言利少弊多,根本不会给你的生活带来什么好处。
结论的至高无上并不意味着你的思维完全停止运转了,也不意味着你可以完全忽略信息和合理解释得出自己的结论。在了解到自己并不喜欢的一项活动的风险其实远比自己想象的小时,你的看法乃至情绪就会发生变化(至少会有那么一点变化)。然而,这种较低风险的信息同样也会改变你对该活动益处的看法(你认为益处会更大),尽管你接收到的信息中没有任何与益处相关的信息。
在此我们又看到了系统2的另一个“特性”。到目前为止,我似乎已经将其描述成一个给系统1留有足够余地的默许监视器。我描述的系统2还具有主动搜寻记忆的功能、复杂计算功能、比较功能、规划功能和决策功能。在球拍和球的问题中以及许多其他的两个系统相互作用的例子中,系统2似乎总是处于最高决策地位,并有能力抵制系统1的建议,它能使事情放缓,开始进行逻辑分析。自我批评是系统2的功能之一。但在态度方面,系统2更像是系统1各种情感的赞许者而非批评者,也可以说是其各种情感的转让者而非实施者。它搜寻的信息和论据多半局限于与已有看法一致的信息,并不着意对其进行调查审核。积极且追求连贯的系统1为要求不高的系统2提供了各种解决方案。
示例:替代和启发法
“还记得我们绞尽脑汁去回答的那个问题吗?我们是不是把它换成了一个简单点的问题呢?”
“别人问我们的问题是这位候选人是否会成功,但我们要回答的问题似乎是她是否能成功应对采访。咱们还是别顾左右而言他了。”
“他喜欢这个项目,因此他认为该项目投入少、回报高。这是情感启发式的一个典型案例。”
贼吧Zei8。COM电子书下载
“我们将去年的表现作为依据来预测公司未来几年的表现。这个依据能作为有效参照吗?我们还需要其他什么信息才能作出正确预测?”
下面列出了系统1的特点和活动。每个主动句都代替了一个陈述句,虽然表述更精确了,但却更难理解了,因此大脑便开始自主且快速地运行。我希望这个对大脑特性的描述能帮你形成一种对虚拟的系统1各种“特性”的直觉认识。与身边的很多人一样,你对系统1在不同情况下如何运作会有直觉的认识,而且其中大多数直觉都是正确的。
系统1的特点生成印象、感觉和倾向;当系统2支持这些行为时,它们就会成为信仰、态度和意图。自主且快速运行,只需付出较少努力,甚至不用付出努力,没有自主控制的感觉。当发现(搜寻)特殊形式时,能接受系统2编控来调动注意力。在接受了一定的训练后,能够做出熟练的回应,产生直觉。为联想记忆激发出来的各种想法创造连贯形式。将认知放松感和真理错觉、愉快的感觉以及放松的警惕感联系起来。区分常态中令人惊奇之事。推断原因和意图。忽略歧义,按捺住心中的疑问。夸大情感的一致性(光环效应)。将注意力集中在当前的证据上,忽略不存在的证据(眼见即为事实)。作一些基本估测。通过常态和原型来表现集合,但不要将两者看成一个整体。通过测量确定不同程度对应的匹配物(比如音量的大小)。真正去计算,而不是空想(思维的发散性)。有时用简单点的问题替代难题(启发法)。对变化的感知比对形态的感知更敏锐(前景理论)。对可能性作出过高估计。对数量越来越不敏感(心理物理学)。对损失的反应比获得更强烈(损失厌恶)。严密设计决策问题,分别进行讨论。
第二部分 启发法与偏见
第10章 大数法则与小数定律
一项研究对美国3141个县的肾癌发病率进行了调查,调查显示该病的分布模式很值得注意。发病率最低的县差不多都位于中西部、南部和西部人口稀少的乡村,这些区域按照惯例由共和党管辖。对此,你有何看法?
刚刚过去的几秒钟里,你的大脑处于非常活跃的状态,这主要是因为系统2在运行。你谨慎地在记忆中搜寻着并作出假设。在这个过程中你也付出了一定的努力,你的瞳孔会扩张,心跳会适度加快。系统1也没有闲着,因为系统2的运行需要从联想记忆中获取事实和建议。你很可能会否认共和党的政策提供了肾癌防控方法这个想法,却会关注肾癌发病率低的县大多是乡村这个事实。这个例子是我从机智的统计学家霍华德·维纳(Howard Wainer)和哈里斯·泽维林(Harris Zwerling)那儿得到的,他们对这一案例的评论是:“人们很容易作出推断,认为肾癌发病率低主要是由于乡村的生活方式很健康,没有空气污染和水污染,食品没有添加剂,保证新鲜。”这一点完全说得通。
现在,考虑一下肾癌发病率最高的县的情况吧。假设这些易发病的县差不多都位于中西部、南部和西部人口稀少的乡村,这些区域按照惯例由共和党管辖。霍华德·维纳和哈里斯·泽维林半开玩笑地评论道:“人们可以很容易作出推断,导致肾癌高发病率的直接原因是乡村生活的贫困,医疗条件差、高脂肪饮食、酗酒、嗜烟等。”当然这种说法肯定有问题,因为乡村生活方式不可能既是肾癌发病率高的原因又是其发病率低的原因。
问题的关键并不在于这些县处在乡村地区或是由共和党掌管,而在于乡村地区人口少。我们通过这个例子学到的不是流行病学知识,而是我们的大脑和统计数据之间的复杂关系。系统1非常擅长一种思维模式,自动且毫不费力地识别事物之间的因果联系,即使有时这种关系根本就不存在,它也会这样认定。当听到肾癌高发地区的情况时,你立刻会想当然地认为这些县与其他县不同是有原因的,一定有个理由可以解释这种不同。然而,正如我们所见,当系统1面对“纯统计学”的数据时是束手无策的,因为这些数据虽然可以改变结果出现的概率,却不能直接导致结果的发生。
根据定义,一个随机事件是不需要解释的,但一连串的随机事件就有规律可循。想象有一个装有大理石弹球的瓮,其中有一半的弹球是红色的,另一半弹球是白色的。然后,再想象有一个非常有耐心的人(或一个机器人)随意从瓮中取出4个大理石球,记录其中的红球数,再把球放回去,重复这样的做法数次。总结记录结果时,你会发现“2红2白”的结果出现的次数(几乎刚好)是“4个全红”或“4个全白”这种结果的6倍。这一倍数关系是个数学事实。你可以对这种从瓮中反复抽样的结果作出自信的预测,就像你能预测到用锤子砸鸡蛋的结果一样。尽管你无法预见蛋壳破碎的具体细节,但大概结果还是很确定的。两件事的不同之处在于:你想到锤子砸鸡蛋时感受到的那种明确的因果联系,在瓮中取样的设想中是找不到的。
相关的统计学事实与癌症那个例子也有联系。两个耐心的计数者轮流从瓮中取大理石球,杰克每次拿出4个球,吉尔拿出7个。他们都记录了每次拿到相同颜色弹球的次数,要么全白,要么全红。如果他们取球的做法持续的时间足够长,杰克拿到同颜色大理石的次数会是吉尔的8倍(两人的预期概率分别为12.5%和1.56%)。这个结果与锤子无关,也与因果联系无关,这仅仅是一个数学上的事实:一次拿4个弹球与一次拿7个相比,出现极端结果的概率更大。
现在,将美国人口想象成一个巨大的瓮中的弹球。有些球上标有KC(即Kidney Cancer的简称)字样,表示肾癌。你抽取弹球样本,并依次按照所在县摆放,你会发现乡村地区的样本要比其他地区的少。如同杰克和吉尔所做的那个游戏一样,极端的结果(非常高或非常低的癌症发病率)容易出现在人口稀少的县,这个故事告诉我们的就是这些。
我们从一个令人费解的事实说起:肾癌的发病率在各县有所不同,且是有规律的,我用统计学理论对此作了解释:相比于大样本,极端的结果(高发病率和低发病率)更容易出现在小样本中。这样的解释不存在因果联系。某县的人口稀少既不会引发癌症,也不能避免癌症,只会使癌症的发病率比人口稠密地方的发病率更高(或更低)。这就是真相,没什么可解释的。在某个人口稀少的县,癌症发病率并非真的比正常情况更低或更高,只是这个县正好在某个特殊的年份赶上了抽样调查罢了。如果我们在第二年重复这样的分析,也能预测到在小样本中出现极端结果的一般模式,但在前一年癌症发病率高的县,这一年发病率并不一定高。如果是这样的话,则人口稠密或稀少的因素就无法对发病率作出解释了:这些表面因素就是科学家眼中所谓的假象,即观察结果完全依赖于调查方法的某一方面,在这个案例中,则依赖于样本大小。
我刚才说的例子也许会令你惊讶,但这并不是真相初次大白于天下。你早就知道应该更相信大样本,并且即使是对统计学一无所知的人也听说过大数法则。但是“知道”并非是非抉择问题,你可能会发现下列陈述放在自己身上很合适:当你阅读这个关于流行病学的例子时,并没有立刻注意到“人口稀少”这一特点与此次调查有何关联。对于采用4个样本还是7个样本所产生的不同结果,你至少会感到有一点惊讶。即使是现在,想要确定下面两个陈述句所说的完全是一回事,你也要费些脑力:
(1)大样本比小样本更精确。
(2)小样本比大样本产生极端结果的概率大。
第一个表述清晰地陈述了一个事实,但直到感受到第二个表述传达给你的意思,你才意识到自己并没有真正理解第一个表述的意思。
上述内容概括起来就是:没错,你知道大样本的结果更精确,但你现在可能才意识到你并不清楚为什么它们更精确。不仅你一人如此,阿莫斯与我在一起进行的第一个研究表明,即使是经验丰富的研究人员对样本效应也缺乏直觉,要么就是理解不到位。
小样本的出错风险可能高达50%
没有接受过统计学方面训练的人是出色的“直觉性统计学家”。我与阿莫斯在20世纪70年代早期的合作便始于对这个观点的讨论。他对我(在大学)的研究班及我本人讲过,密歇根大学的一些研究人员对直觉性统计抱有乐观态度。我个人对那个观点有种强烈的感觉:那段时间我发现自己并不是一个出色的直觉性统计学家,但是我也不相信别人会比我好多少。
对于一个研究型心理学家来说,样本变差没有什么特别的。它是个烦人且损失又大的麻烦事,会把每项实验都变成一场赌博。试想你希望证明6岁女孩的平均词汇量比同龄男孩的词汇量更丰富的假设。这个假设从整体来说是成立的,女孩的平均词汇量确实要比男孩的丰富一些。然而,尽管男孩与女孩差别很大,但你很可能会抽取到男女相差不太明显的样本,甚至会抽到一个男孩比女孩词汇测试成绩还要好的样本。如果你是那个研究者,这个结果对于你来说代价就太高了,因为它浪费了你的时间和精力,却无法证实一个实际正确的假设。使用一个足够大的样本是降低这种风险的唯一方法。选择小样本的研究者只能看自己是不是能选对合适的样本了。
想要对样本错误的风险作出评估,只需通过一个相当简单的步骤就可以实现。然而按照惯例来看,心理学家并不是通过计算来选定样本大小的。他们听从自己的判断,但这些判断往往是错的。在与阿莫斯发生意见分歧不久之前,我读过一篇文章,文章通过生动的观察结果展示了研究人员所犯的错误(他们现在仍在犯这种错误)。该文作者指出心理学家选择的样本通常都很小,致使他们有50%的风险不能够证实其正确的假设,而任何研究人员都不会在头脑清醒的情况下接受这种风险。对此有一个貌似正确的解释,即心理学家对于样本大小的决定反映了他们普遍存在的一个直觉性错误观念,即对于样本变差范围的错误看法。
这篇文章令我十分震惊,因为我在自己的研究中碰到了一些问题,却在这篇文章中找到了相关解释。与大多数研究型心理学家一样,我也墨守成规地选择了一些过小的样本,因此得到的实验结果毫无意义。现在,我知道了原因:那些奇怪的结果实际上就是我这种研究方法的典型产物。我的错误特别令人尴尬,因为我教过统计学,也知道该怎样计算样本的大小,以便将风险降至可以接受的程度。但是,我从未通过计算来确定样本大小。和我的同事一样,我被传统所禁锢,相信自己设计实验的直觉,也从未认真考虑过样本选择会带来的那些风险。阿莫斯来参加研讨会时,我已经意识到自己的直觉是错误的。在研讨会中,我们很快达成共识,密歇根的那些乐观派是错误的。
我与阿莫斯开始调查一个问题:只有我自己这么愚蠢还是我只是众多愚蠢的人之一,我们通过一项测试来证实这个问题,测试对象为一些数学家,想看看这些人是否也会犯类似的错误。我们设计了一份调查问卷,其中描述了真实的研究情境,包括一些成功实验的复制。问卷要求研究人员选择样品大小,对其决定可能带来的失败风险进行评估,并为那些正在设计自己实验的研究生提供建议。在“数学心理学协会”的一次会议上,阿莫斯收集了一组资深受试者(包括两本经济学著作的作者)的反应。结果很明显:我并不是唯一一个愚蠢的人。大多数受试者都会犯和我一样的错误。显然,即使是专家,在选择样品大小时也无法充分集中注意力。
我和阿莫斯将我们合写的第一篇文章命名为“对小数定律的盲信”。我们半开玩笑地解释道,“对于随意取样的直觉似乎符合小数定律,由此可以断言大数法则对于小数定律同样适用”。在文章中,我们还收录了一个措辞有力的建议,即研究人员认为他们“对于统计直觉应抱有一些怀疑,只要条件允许,都应采用计算方法来确定样本规模,而不是依靠直觉印象作决定”。
信任多于质疑的普遍性偏见
在一次面向300名老年人的电话民意调查中,有60%的人支持总统。
如果你只能用三个词来总结这句话,该怎么说呢?几乎可以肯定的是,你会说“老年人支持总统”。这些词概括了这句话的要点。这次民意调查被省略掉的细节,媒介为电话,样本为300人,本身意义不大,它们提供的背景信息并不怎么引人注意。即使样本数量变了,你的结论也不会发生变化。当然,一个完全荒谬的数字倒可能会引起你的注意。(例如一项对6名或6亿名老年选民的电话民意调查……)除非你是专业人员,否则不管样本是150还是3000,你都不会有什么不同的反应。这就是“人们对样本大小没有足够的敏感性”这一表述的意义。
这项民意调查包含了两方面的信息:新闻本身和新闻的来源。当然,你关注更多的是新闻本身,而不是其结果的可信度。但当可信度明显很低时,新闻所包含的信息也就不足为信了。如果得知“某党派小组操纵一项错误且带有偏见的民意调查,使结果显示老年人支持总统……”你当然会排斥这项调查的结果,不会相信这条新闻,这项由某党派进行的民意调查以及其错误结果不但没有令你信服,反而会成为另一条关于政治骗局的新闻。在这样清晰的案例中,你可以选择不相信其中的信息。但是你能把“我在《纽约时报》读到……”和“我在办公室闲聊中听到……”这两种说法完全区分开来吗?你的系统1能够区分出信息的可信度吗?眼见即为事实的原则表明:不能。
如前所述,系统1并不善于质疑。它抑制了不明确的信息,不由自主地将信息处理得尽可能连贯。除非该信息被立刻否定,不然,它引发的联想就会扩散开,仿佛这条信息就是千真万确的。系统2能够提出质疑,因为它可以同时包含不相容的多种可能性。然而,保持这种质疑会比不知不觉相信其真实性更加困难。小数定律是普遍性偏见的一种表现,即对事物的信任多于质疑。类似这样的偏见在下面的章节中还会出现。
相信小样本能反映调查对象的整体情况,这一强烈偏见也是一个较大问题的一部分。这个问题就是,我们常夸大所见事物的相容性和连贯性。许多研究人员过于相信通过有限的几次观察得出的结果,这一现象与光环效应紧密相连。我们常常会觉得自己对某个人很熟悉也很了解,但事实上,我们对他却知之甚少。系统1在了解事实之前就根据零散的证据拼凑了一个饱满的形象。如果相信小数定律,急于下结论的机制就会运作起来。通常情况下,它会建构一个言之成理的说法使你相信自己的直觉判断。
对随机事件作出因果解释必然是错的
联想机制会搜寻原因。在统计规则方面,我们面对的困难是这些规则要求使用不同的方法处理问题。依据统计学观点,我们不应关注当前事件的成因,而应当关注其未来走向。这件事的发生并没有什么特殊原因,一切只是机缘而已。
因为偏好进行因果思考,我们在估测真实的随机事件的随机性时就会犯严重的错误。以在某家医院依次出生的4个婴儿的性别为例,男女出生次序明显是随机的。每个婴儿的出生是各自独立的。在前几个小时内出生的男婴女婴数量并不会影响到下一个出生婴儿的性别。现在,请考虑一下可能的序列:
男男男女女女
男男男男男男
男女男男女男
出现这些序列的可能性是一样的吗?人们的第一反应都是“肯定不一样啊”。但是,这样的反应是错误的。因为每个婴儿的出生都是独立的事,并且生男生女的概率也几乎相等,6个婴儿任何一种可能的性别顺序都与别的顺序概率相等。即使是现在,你仍然认为这个结论是正确的,但它实际上是反直觉的,因为只有第三种顺序是随机的。如我们所料,“男女男男女男”比其他两种顺序更有可能发生。我们追求模式,相信所处的是一个各方面都相互联系的世界。在这个世界里,规律(例如6个女婴的顺序)并不只是偶然发生的,它还是机械的因果联系或是人的意志的结果。我们并不期待在一个随机的过程中找到规律。但当探寻到一个可能的规则时,我们就会抛开这个过程是真正随机的想法。随机过程会产生许多序列,以使人们相信这个过程完全是不随机的。如此你就可以看出来为什么假设的因果关系有进步发展的优势。它是我们从先辈那里继承的一般警觉性的一部分。我们会习惯性地搜寻环境变化的可能性。狮子可能随时都会出现在平原上,但注意到狮子出现频率的明显增长并采取行动则会安全许多,即使这种增长只是由于随机过程的波动而发生的。
对于随机性的广泛误解有时会带来重大影响。在我和阿莫斯合作的一篇代表性文章中,我们引用了统计学家威廉·费勒(William Feller)的阐述,他说,人们很容易在根本没有模式的情况下创建模式。“二战”期间,火箭弹在伦敦密集地轰炸。人们普遍相信爆炸不可能是随机的,因为地图显示,爆炸点在各地的分布有明显区别。一些人猜测没有被炸的地点住有德国的间谍。一份严谨的统计分析显示,爆炸点的分布是随机程序的一个典型代表,同样也是令人产生它并不是随机的这一强烈印象的典型代表。费勒评论道:“在没受过专业训练的人看来,这一连串轰炸行动就好像具有某种规律或趋势了。”
“很快,我得到一次机会可以把我从费勒那儿学到的知识派上用场。1973年爆发的赎罪日战争中,我作出的唯一一项重大贡献就是建议以色列空军的高级官员停止一项调查。一开始,由于埃及地对空导弹表现出色,空战对于以色列来说很不利。以色列方面人员伤亡惨重,其人员分布也不均衡。有人告诉我说,有两支来自同一基地的空军中队,其中一支被击落了两架飞机,而另一支一架也没有被击落。为了弄明白那支不幸的空军中队到底做错了什么,相关人员对此展开了调查。我们没有理由认为其中一支空军中队比另一支更有效率,也并未发现他们在操作上有何不同。当然,飞行员的生活在很多方面会有所不同,据我回忆,其差异包括他们在任务之间回家的次数以及报告任务的执行情况等。我当时给出的建议是,司令部应该明白之所以出现不同结果仅仅只是因为他们运气不同而已,应该停止对飞行员的调查。我推断这次事件很可能是由于运气不佳,对不明显的原因进行随机调查必定是劳而无功的。与此同时,空军中队不断有人员损失,没有必要再给他们增加额外的负担,让他们觉得那些去世的伙伴做错了什么。”
几年以后,阿莫斯和他的同学汤姆·季洛维奇(Tom Gilovich)、罗伯特·瓦隆(Robert Vallone)对篮球随机性的错误直觉所作的研究引起了轰动。运动员有时投篮顺手的“事实”普遍被运动员、教练和球迷们所接受。这样的推断是顺理成章的:如果一个运动员连续进了三四个球,你就会不由自主作出判断:这个运动员正处于“投篮顺手”的状态,得分率暂时增加。两队队员都持这种判断,队员也更爱将球传给打得顺手的人,对方球队则会用两位防守球员防卫这位进攻球员。然而,对上千个投篮动作的分析结果却十分令人失望:在职业篮球比赛中,无论球是从球场上投出还是从罚球线投出的,根本没有“投篮顺手”这回事。当然,一些球员会比其他球员投篮更准,但进球与投篮未中都只是随机的。“投篮顺手”完全只是旁人所见,而且他们太快作出评判了,以至于感知不到随机事件中的顺序和因果关系。“投篮顺手”是一个影响深远的认知错觉。
公众对于这项研究的反应也是这项研究的一部分。这个发现令人惊讶,很快就受到了媒体关注,而大家普遍的反应都是不相信。当著名的波士顿凯尔特人队教练瑞德·奥尔巴赫(Red Auerbach)听说了季洛维奇及其发现(研究)时,他回应道:“这人是谁呀?他做了个实验是吧?不过我对他的观点不敢苟同。”在随机性中发现规律的想法往往不可逆转,肯定比某个人作了一项研究更有说服力。
对规律的错觉在方方面面影响着篮球赛场。你要用多少年的观察才能肯定一个投资顾问是有真才实学的?一个执行总裁实现多少次成功的兼并,董事会才能确定他对这项工作有着非凡的才能?简单说来,如果你听从自己的直觉,就常常会因为把随机事件看做是有规律的事件而犯错。我们都非常愿意相信生活中大多数事情并不是随机的。
在本章开头,我引用了一个美国癌症发病率的例子。这个例子本来是有意写给统计学老师看的,我是从前文中提到的两位统计学家霍华德。维纳和哈里斯。≮我们备用网址:www.Zm 贼吧电子书≯泽维林所写的一篇有趣的文章中看到这个例子的。他们写这篇文章得到了盖茨基金会17亿美元的赞助,用以调查那些最成功的院校有哪些特点。许多研究人员在那些名声显赫的院校中作调查,希望发现这些学校的与众不同之处,从而寻求成功教学的秘密。这项研究的结论之一是,这些著名院校规模普遍较小。例如在宾夕法尼亚州对1662所院校的调查中,排名前50的院校里有6所规模都较小,是(普通院校)的3倍多。这个数据使得盖茨基金会积极投入大量资金建立小规模的院校,有时会采取将大的院校拆分成小的院校的方法。另外,其他著名的机构中至少有一半也采取了同样的做法,例如爱林伯格基金会和皮尤慈善机构也采取了同样的做法,美国教育部还启动了“小型学习社区计划”。
你可能会觉得上述做法很有道理。我们很容易从因果关系角度去解释小规模的院校为什么可以提供优质的教学。我们认为,比起大规模院校,小规模院校可以给予学生更多的关注及鼓励,因此能培养出成就卓越的学者。但不幸的是,这样的因果分析是无意义的,因为得到的结论都是错误的。如果那些向盖茨基金会提交报告的统计学家们调查过最差学校的特点,他们会发现那些较差的学校也比水平一般的学校的规模小一些。事实上,规模小的学校办学水平并一定更高,他们只不过更懂得变通而已。维纳和泽维林说,如果真有什么区别的话,那就是大规模院校可以提供多种多样的课程,所以容易收到好的效果,特别是学生能拿到高分。
多亏了几年来认知心理学的发展,我们现在才能清楚地知道阿莫斯和我所瞥见的不过是冰山一角:小数定律包含在大脑工作的两个重要部分中。夸大对小样本的信任只是众多错觉中的一种,比起信息的可靠度,我们会更加注重信息本身的内容,其结果就是我们会将周围的世界变得比数据所能证明的更加简单和统一。在想象的世界中过早下结论比在现实中更有把握。统计学家的很多观察研究都可归结到因果关系的解释上,但他们却不承认是这样的。许多事实其实只是巧合,包括事件的采样。对偶发事件作出因果关系的解释必然是错误的。
示例:小数定律
“没错,自从这个新执行总裁接手后,电影制片厂已经制作了3部优秀电影。不过,现在说他老练还为时过早。”
“统计学家能够估算出这个交易新手表现出来的强劲势头是否是偶然的,所以在咨询统计学家之前,我不会相信他就是个天才。”
“观察的样本太小,所以不能作出任何推断。我们不要遵从小数定律。”
“在我们有足够大的样本之前,我计划对实验结果暂时保密。否则,我们会有过早下结论的风险。”
第11章 锚定效应在生活中随处可见
阿莫斯和我曾临时赶制过一个幸运轮盘,上面刻有零到100的标记,但我们对它进行了改装,使指针只能停在10或65的位置上。我们从俄勒冈大学招募了一些学生做这项实验。我们两人中有一个会站在一个小组前面,转动这个幸运轮盘,并让小组成员记下转盘停下时指向的数字,当然了,这些数字只可能是10或65之后,我们问了他们两个问题:
你刚才写下的关于非洲国家占联合国(所有成员国)的百分比的数字大还是小?
你认为联合国中非洲国家所占的比例最有可能是多少?
幸运轮盘的转动根本不可能为任何事情提供有用信息,即使没有经过改装的轮盘也不可能,实验的受试者应该忽略它的影响,但他们没有做到这一点。那些看到10和65的人的平均估值分别为25%和45%。
我们研究的现象在日常生活中很普遍也很重要,因此你应该记住它的名字:锚定效应。人们在对某一未知量的特殊价值进行评估之前,总会事先对这个量进行一番考量,此时锚定效应就会发生。这一效应是实验心理学中最可靠也最稳健的结果,即估测结果和人们思考的结果很相近,就好比沉入海底的锚一样。如果有人问你甘地死时年龄是否大于114岁,你在估测他的死亡年龄时会比锚定问题是35岁(死亡)时更高。你在考量买房要花多少钱时,也会受到要价的影响。同样的房子,如果市场价格高,它就显得比市场价格低时更有价值,即使你决心抵制价格的影响也没有用。此类事例不一而足,锚定效应的事例不胜枚举。一旦你要考虑某个数字是否会成为一个估测问题的可能答案,这个数字就会产生锚定效应。
我们不是最先观测锚定效应的人,但我们的实验是第一个揭示其荒谬性的实证研究:人们的判断明显受到没有任何信息价值的数字的影响。若想解释轮盘的锚定效应是合理的,这似乎不太可能。阿莫斯和我在《科学》杂志上发表的论文中提到了我们的实验,我们在这份杂志上发表的所有研究成果中,这是最著名的一个。
但唯一的问题是:阿莫斯和我对锚定效应体系中的心理学现象的认识并不完全一致。他支持一种解释,我则偏向另外一种,而且我们从来没有找到解决这个分歧的方法。几十年后,无数研究者通过努力终于解决了这个问题。现在问题明确了:阿莫斯和我都是正确的,是两个不同的机制共同作用产生了锚定效应,即一个系统对应一个机制。锚定有一种形式,即它是在进行刻意调整时发生的,这也是系统2的一种运行模式。还有一种是由启发效应产生的锚定,是系统1的一种自主显示模式。
对锚定值的调整常常是不足的
阿莫斯喜欢将调整,锚定的启发式想法作为估测不确定值的策略:从锚定的数字开始,然后估测它是过高还是过低,接着让大脑从锚定数值上“转移”并逐渐调整你的估值。调整通常会过早结束,因为当人们不再确定他们是否应该继续移动时就会停止移动。在我和阿莫斯意见出现分歧的几十年后,也就是阿莫斯去世的几年后,两位心理学家分别提出了有关这个(调整,锚定)过程令人信服的证据,这两位心理学家在其职业生涯早期曾和阿莫斯一起共事过,他们就是埃尔德·沙菲尔(Eldar Shafir)和汤姆。季洛维奇,参加研究的还包括他们的学生,阿莫斯的“徒孙”们!
为了验证这个想法,请拿出一张纸,从纸的底端由下而上画一条2.5英寸长的线,徒手画,不用尺子。现在请拿出另一张纸,从纸的顶端开始由上而下画一条线,在距顶端2.5英寸处停笔。比较这两条线。你很可能会估测第一条2.5英寸长的线比第二条短,因为你并不确切地知道这样的一条线究竟该是什么样的。这种估测有很多不确定的因素。你若从纸的下端开始画起,就会停在下面的不确定区域;如果你从纸的上端开始画起,就会停在上面的不确定区域。罗宾·勒伯夫(Robyn LeBoeuf)和沙菲尔在日常经历中发现很多关于这种机制的例子。为什么你在开车下了高速公路驶入城市街道时还会开那么快,如果是边聊天边开车,速度尤其容易快。调整不足就是对这一现象的最好解释。孩子在房间里喜欢把音乐开得很大声,父母却很恼火,两代人关系紧张,其原因也是调整不足。勒伯夫和沙菲尔注意到“家长要求孩子应将音乐调到‘适当’的音量,但听着特别大声音乐的孩子即使想这样做也难,还会认为家长忽视了他们真心作出的让步,这是因为他们无法从充分的高锚定值中调整过来”。这里提到的司机和孩子都有意地(将数值)向下调整,但两者都没有(将这个值)调整到位。
请看下面的问题:
乔治·华盛顿是何时当选总统的?
珠穆朗玛峰峰顶上的沸点是多少?
在思考这些问题时,最先发生的事就是你的脑海中出现了锚定数字,你知道这样是不对的,而且还知道正确答案的大致方向。你马上就知道乔治·华盛顿是1776年后成为总统的,你也知道珠穆朗玛峰峰顶上的沸水温度比100摄氏度低。你不得不去寻找从这个锚定值上移开的论据,将其调整到合适的数值。就像前文提到的那个线段的例子那样,在那个不确定区域的边缘,你不确定是否应该继续进行时就会停止。
尼克·艾普雷(Nick Epley)和汤姆·季洛维奇发现,调整就是刻意去寻找离开锚定数字的理由:按照要求一听到锚定值就摇头的人仿佛对此有些排斥,他们会离锚定值更远。而点头则会增强他们对锚定值的概念。艾普雷和季洛维奇也证实说调整是一项需要付出努力的活动。人们在自己的大脑资源耗尽时调整较少(离锚定较近),因为他们的记忆中存储着一些数字或是因为他们有些醉了。调整不足是软弱或懒惰的系统2的一种失误。
我们现在知道阿莫斯至少对一些锚定效应的例子的理解是正确的,这些例子中包含了系统2为离开锚定值进行的具体调整。
暗示就是一种锚定效应
当阿莫斯和我就锚定效应进行争论时,我同意(他说的)有时会出现调整现象,但其实心里很不服气。调整是一个审慎且有意识的行为,但锚定效应的大多数例子中并没有相应的主观经验。请看下面两个问题:
甘地去世时比144岁大还是小?
甘地去世时多少岁?
你是否会把144岁向下调整来得出自己的评估?也许不会,但这个大得离奇的数字仍然会影响你的估测。我的直觉告诉我,锚定就是一种暗示。如果有人只是提起某件事,而他的话却促使我们去看、去听或是去感受这件事,此时的情形就可以用锚定来形容。例如,“你的左腿现在是否微微麻木了”这个问题常会使相当多的人回答说他们的左腿确实感到有些异样。
阿莫斯对直觉的研究比我更谨慎,他一针见血地指出,关注暗示对我们理解锚定效应没有什么帮助,因为我们不知道如何解释暗示作用。我不得不同意他是对的,但我不同意调整不足是锚定效应的唯一原因。我们为理解锚定效应做过很多实验,但是都以失败告终,最终我们放弃了进一步研究这一课题的想法。
现在,那个打败我们的难题得到解决了,因为暗示的概念已经明确了:暗示即一种启动效应,它会有选择地找出相应的证据。你完全不会相信甘地活到了144岁,但你的联想机制却会对一位逝去的老人产生印象。系统1理解句子的方式就是尽量相信其内容的真实性,它对相应想法的选择性激活会产生一系列的系统性误差,这些误差会使我们更容易受骗,更加坚定地相信自己的想法。我们现在明白为什么阿莫斯和我从前没有意识到锚定效应有两种类型:研究手法和理论观念,我们研究这个问题时很需要这两种类型但它们却没有出现。后来,其他人极大地发展了这两种类型。
在很多情况下,我们都需要一个类似暗示的过程发生作用:系统1试图建立一个将锚定数字视为真实数值的世界。这是我在本书第一部分描述的联想一致性的一种表现。
德国心理学家托马斯·穆斯魏勒(Tomas Mussweiler)和弗里茨·斯特拉克(Fritz Strack)对锚定效应中联想一致性的作用所作的实证研究最令人信服。在一项实验中,他们问了一个关于温度的锚定问题,“德国每年的平均温度是高于20摄氏度还是低于20摄氏度”,或者“德国每年的平均温度是高于还是低于5摄氏度”?
研究人员让所有受试者快速扫过一些单词,然后让他们去识别这些词。研究人员发现,受试者看到20摄氏度后更容易识别和夏天相关的词(比如“太阳”和“沙滩”),看到5摄氏度后则能更加轻松地识别出关于冬天的词汇(比如“冰冻”和“滑雪”)。对相应记忆的选择性激发解释了锚定效应:大小不同的数字能激发起记忆中不同的观念体系,而这些带有偏见的观念则成为(受试者)估测年度平均温度的依据,据此作出的估测值也因此带有一定偏见。在另一个基于同一目的的简单实验中,研究人员让受试者估测德国汽车的平均价格。高锚定值的受试者会选择性地让奢华品牌(比如奔驰、奥迪)的汽车最先出现在脑海中,而低锚定值则会使人最先想到一些销售量大的汽车品牌(比如大众)。此前我们就知道任何启发都会唤起与之相应的信息。暗示和锚定效应都通过相同的系统1的自主运行得到了解释。尽管当时并不知道如何证实这一观点,但我对锚定效应和暗示之间存在联系这一直觉最终被证实是正确的。
作为这幢房子的主人,你能接受的最低售价是多少?
很多心理学现象可以通过实验得到证实,但事实上这些现象中几乎没有哪种是可以测量的。锚定的影响是一个特例,锚定效应可以测量,测量结果证实这一效应影响超大。有人曾经问过那些参观“旧金山探索馆”的游客下面两个问题:
最高的那棵红杉树是高于1200英尺还是低于1200英尺?
你认为那棵最高的红杉树有多高?
这个实验中的“高锚定值”是1200英尺。而另外一组受试者看到的第一个问题则用了一个180英尺的“低锚定值”。两个锚定值相差1020英尺。
不出所料,(关于那棵最高的红杉树有多高)两个组给出了完全不同的平均评估:844英尺和282英尺。两者的差距有562英尺。锚定指数就是两个不同答案的比率55%。对于那些在评估过程中过度运用锚定的人而言,锚定效应的测量结果将是100%,对于那些能够忽略锚定的人而言,锚定效应的测量结果则是零。这项实验中观察到的55%的锚定指数非常典型,在其他许多问题中也观察到了相似的锚定指数。
锚定效应在实验室中司空见惯,在现实世界中其影响同样毫不逊色。几年前的一个实验中,实验人员让一些房地产经纪人对一幢待售房子的价值进行评估。这些经纪人亲自去看了这所房子,还仔细研究了一本小册子,里面包括这幢房子的全面信息和售价。其中一半经纪人评估的售价比标价高很多,另一半评估的售价则比标价低很多。每位经纪人都给出了自己认为合理的售价,同时(假定自己是这幢房子的房主)她们还给出了自己能够接受的最低售价。实验人员随后问这些经纪人哪些因素影响了她们的决策。出乎意料的是,售价并非影响因素之一。这些经纪人十分得意,因为她们没有被这个因素所左右。她们坚称标价没有影响到她们对这一问题的回应,但实际上她们错了:锚定指数是41%。事实上,专业人士和对房地产一无所知的商学院学生一样,都受到了锚定效应的影响。后者的锚定指数是48%。两者的唯一区别是,学生承认他们受到了锚定效应的影响,而专业人士则否认这一点。
在人们对钱的问题所作的决定中同样体现出了强大的锚定效应,人们选择对一项事业投入多少时就会受锚定效应的影响。为了证实这一影响,我们告诉探索馆研究中的受试者,太平洋中的油管引起了环境污染,问他们是否愿意每年都捐钱“使5万只近太平洋海岸的海鸟不致受小面积海上溢油的影响,直到找到防止泄漏的方法或要求油罐所有者支付运行费用为止”。这个问题需要强度相匹配:实际上,我们是在要求调查对象预估应该捐献多少钱才能与自己对海鸟困境的感受程度相匹配。对其中一些游客,实验人员并没有直截了当地问她们愿意捐多少钱,而是先问了一个锚定问题,比如“你是否愿意花5美元来……”
若没有提到锚定问题,这些对环境都很敏感的探索馆参观者会说他们愿意拿出的钱平均为64美元。当锚定金额只有5美元时,平均捐款则是20美元。当锚定金额达到400美元时,人们的捐款平均数就达到了143美元。
高锚定金额和低锚定金额之间相差123美元。锚定指数高于30%,表明增长100美元的初始要价就能带来平均值为30美元的回报。
许多估测和捐款意愿的研究都曾体现出相似甚至更大的锚定效应。例如,有人曾问过那些在法国马赛重度污染地区居住的居民,如果能住在一个污染程度较低的地方,他们能接受生活开销提高多少。锚定指数在该研究中超过了50%。在网上购物过程中也很容易观察到锚定效应,网上相同的产品经常标出不同的“立购”价。“估测”在艺术品拍卖行业中是影响第一次竞拍的锚定价格。
锚定效应在某些情形下看起来也是合理的。毕竟,那些被问到难题的人肯定会去抓住这根救命稻草的,况且这个锚定值也是根貌似合理的稻草。如果你对加利福尼亚的树所知无几,却又被问到红杉树是否高于1200英尺,此时你可能就会认为这个数字与真实数字相差不远。因为是那些知道这种树真实高度的人想出的这个问题,所以这个锚定值也许是个有价值的提示。但是,锚定效应研究有一个重要发现,即锚定值显然是任意的,它也许和可能有信息价值的锚定值一样有效。当我们用轮盘来估测联合国中非洲国家所占的比例时,锚定指数是44%,还算是处在看似正确且能作为提示的锚定效应的影响范围内。有些实验已观察到大小相似的锚定效应,在这些实验中,受试者社保号的最后几个数字被用做锚定值(比如为估测他们城市中医生的数量)。结果很明确:锚定值没有影响,因为人们认为这些数字没有什么信息价值。
随机锚定的影响以一些令人不安的方式出现在生活中。一些任职经历平均为15年的德国法官先是读了一份案例,讲到一个妇女在商店顺手牵羊被捉住的案例,然后他们开始掷一副骰子,这副骰子被人提前做过手脚。因此,每次掷骰子的结果不是3就是9。骰子一停,实验人员就问这些法官是否会将那位妇女送进监狱,且其服刑的时间应该比骰子上的数大还是小。最后,实验人员问这些法官,他们给这个行窃的妇女判定的服刑期具体是多少。平均来看,那些掷了9的法官说他们会关她8个月,而掷了3的法官说他们会关她5个月,锚定指数是50%。
锚定效应何时适用,何时不适用?
到现在为止,你已经相信锚定效应无处不在,有时是由于启发效应,有时则是因为调整不足。产生锚定效应的心理机制使我们比自己预想的更容易受影响。当然,有些人愿意且能够利用我们的轻信。
例如,锚定效应解释了为什么限量购买是一种有效的营销策略。几年前,在艾奥瓦州的苏城的超市里,购物者遇到了坎贝尔汤罐头在作促销的情形,降价10%。有那么几天货架上写着“每人限购12罐”,而在其他几天里则写着“不限量”。购物者在限购时平均会购买7罐,是不限购时购买量的2倍。锚定效应不是唯一的解释,配给也显示货物很快就下架了,购物者应该对货物储存量感到有些紧张。但我们也知道12罐的可购买量会成为一种锚定,即使这一数字是通过轮盘产生的也不例外。
同样的策略在商讨购房价上也适用。在许多其他的活动中也是这样,在协商中率先出击的一方往往会占有优势,例如,当价钱是买方和卖方唯一要协商的事时就会出现锚定效应。第一次在集市上讨价还价也是这样,先发锚定有着重大的影响。我在教学生谈判时,给他们的建议是如果你认为是对方作出了无礼的提议,你就不应该提出同样无礼的提议,因为两者之间有距离的话会使此后的商谈难以进行。你应该大吵大闹,夺门而出,或者威胁对方说自己也会这样做,要让对方明白以这个数字为基准的话,谈判将难以继续。
心理学家亚当·加林斯基(Adam Galinsky)和托马斯。穆斯魏勒提出了更好的方法来抵制商谈中锚定效应的影响。他们告诉谈判者,在商谈中要集中注意力搜寻大脑记忆来抵制锚定效应。激活系统2的做法会很奏效。例如,在第二个提议人将其注意力集中在对方能接受的最低值或对方无法接受的费用上时,锚定效应就会削弱或消除。大体来讲,有意地“为对方着想”的策略也许是抵制锚定效应的好方法,因为它否定了能产生这些效应的带有偏见的想法。
最后,试试看你能不能弄清楚锚定效应对公共政策问题的影响,即人身伤害案件的损害程度的裁定。这类案件的判决有时是很严厉的。类似医院和化工企业等单位常常是这类诉讼案件的被告,这些单位曾经游说各方为此类判决设置了一个上限。
读本章之前你可能想过,给这些判决设置上限绝对是有利于潜在被告的,但现在你就不会这么确信了,如果上限是100万美元,其结果会怎样?这条规则会消除所有的严厉判决,但锚定也会阻止法官将许多较轻罪行的量刑判得更轻。这对违法者和大公司都有好处,比给小公司带来的好处多。
随机锚定效应还会使我们更加了解系统1和系统2之间的关系。人们一直利用判断与选择的案例来研究锚定效应,而判断与选择最终总是由系统2完成的。但是,系统2对从记忆中提取的数据进行加工,并由系统1进行自主的、无意识的运行,因此很容易受锚定效应的影响,而这种影响会使某些信息更容易让人回想起来。此外,系统2对这种影响一无所知,也无法控制。看到随机或荒谬的锚定值(比如甘地死时144岁)的那些受试者会自信地说,这个明显无用的信息并没有对他们的估测行为产生影响。事实上,他们错了。
在讨论小数定律时我们发现,如果一则消息没有马上被视为谎言,那么不管其可靠性如何,它都会对联想系统产生同样的影响。这个消息的重点是故事,随便根据什么信息编造的都无所谓,即使这则消息的信息量很少,质量很差劲也无所谓,因为眼见即为事实。当你读到一个拯救受伤登山客的人的英勇故事时,这个故事对你的联想记忆产生的影响和一篇新闻报道或电影简介大体差不多。锚定效应是由这个联想激发引起的。这个故事是否真实、是否可信一点都不重要。随机锚定的强大影响是锚定效应的极端例子,因为随机锚定显然没有提供什么信息。
我在前文中讨论了启发效应纷繁复杂的表现类型,在启发效应下,你的思想和行为也许会被完全不曾留意的刺激所影响,甚至会被你完全没有意识到的刺激所影响。启发实验的主要寓意是我们的思想和行为会受当时的环境影响,且这种影响比我们了解或想象的要大。很多人发现启发效应的结果令人难以置信,因为它们和主观经验相去甚远。另外很多人则发现其结果令人不安,因为它们威胁着我们对中介和自主性的主观感受。如果不相关的大脑屏保能在你意识不到的情况下影响你对陌生人的帮助,那你到底有多自由呢?锚定效应也以相似的方式威胁着你。你总能意识到锚定,甚至会对它格外关注,但你不知道它是如何引导和限制你的思考的,因为你不能想象如果锚定改变(或不存在)你会如何思考。但是,你应该假设任何一个公开谈判时的数字都对你有锚定效应,如果概率大,你应该抵制(你的系统2)该效应。
示例:锚定
“我们想要收购的公司给我们看了他们的商业计划,其中包括他们希望得到的收益。我们不应该让那个数字影响到我们的思路。将其放置一边。”
“计划是为最佳情况设计的方案。当我们预计实际结果时,要避开计划的锚定效应。想想计划出现失误的各种方式也不失为执行计划的一个方式。”
“我们商谈的目标是让他们锚定在这个数字上。”
“我们要清楚一点,如果那就是他们的提案,那么商谈就此结束吧,我们不想那样开展工作。”
“被告律师提出一个微不足道的证明,证明中提到了一个荒谬的小损失,这些律师就是想让法官们拿这个损失做锚定。”
第12章 科学地利用可得性启发法
1971~1972年,阿莫斯和我在俄勒冈州的尤金度过了我们最为高产的研究时期。我们在俄勒冈研究院做客,在我们研究的领域,判断、决策制定和直觉性预测,中该研究院后来诞生了很多未来之星。主要负责接待我们的是保罗。斯洛维克,他曾是阿莫斯在安阿伯市时的同学,也是他一辈子的朋友。保罗当时即将成为风险心理学领域中的领军人物,他独领风骚几十年,也获得了很多荣誉。保罗和他的妻子洛兹带我们感受尤金的生活,很快我们也开始效仿尤金人,常去跑步、烧烤,带孩子去看篮球赛等。我们非常努力地工作,做了很多关于启发法的实验,也写了很多文章。晚上的时候,我就写那本《注意与努力》,那段时间我非常忙。
我们的项目中有一项是对“可得性启发法”进行研究。我们问自己,人们在想要估计某类事件的出现频率时到底是怎么做的,这些事件包括“人在60岁之后的离婚概率”或“(是否是)危险的植物”等。我们认为这种自问就是启发法。这些问题的答案很简单:从记忆中搜寻这类问题的实例,如果搜寻过程既轻松又顺畅,这些事的发生概率就会被判断为很大。我们将可得性启发法定义为通过“实例呈现在脑中的轻松程度”来判断概率的过程。我们的系统阐述似乎已经给出了这一方法的明确定义,但可得性这一概念此后仍在不断得以精炼。我们在研究可得性的时候还没有阐发两个系统的方法,而且我们并没有费尽心思去确定启发法是可以解决问题的主观策略,还是一个自主运行的无意识行为。现在我们知道启发法其实涉及两个系统。
我们之前思考的问题是,到底需要在大脑中搜寻多少实例才算是轻松回忆,以获得某一印象。我们现在知道了答案:一个也不用。例如,请考虑下面两组字母可以组成多少个单词。
XUZONLCJM
TAPCERHOB
你几乎不必去想什么实例,一打眼就知道其中一组字母比另一组组成单词的可能性更大,可能会多10个或者更多。同样,想要清楚地了解不同国家去年出现在新闻中的相关频率(比利时、中国、法国、刚果、尼加拉瓜、罗马尼亚等)你也无须回想具体的新闻报道。
意识到自己的偏见有利于团队关系融洽〖贼吧Zei8。Com电子书下载:Zm 贼吧电子书〗
与其他判断启发法一样,可得性启发法就是用一个问题替代另一个问题:你希望估测某一范畴的大小或某一事件的(发生)频率,但你却会提到自己想到相关实例的轻松程度。问题的替代必然会产生系统性错误。你会发现启发法是如何通过一个简单的过程导致偏见的,不直接说出(事件发生的)频率,而是列举那些使你轻松想起相关实例的因素,其中的每个因素都会成为偏见的潜在来源。试举几例:你可以很轻松地回想起引起自己注意的突出事件。好莱坞明星的离婚事件和政客的性丑闻事件格外引人注目,想到这些实例并不难。因此,你很容易夸大好莱坞离婚事件和政客性丑闻事件的频率。一个大事件会暂时提高此类事件的可得性。飞机失事事件会有媒体来报道,这也会暂时改变你对飞行安全的看法,接着你又看到路旁有辆汽车着火了,于是这些事故会暂时盘踞在你的脑海中,你会觉得这个世界此时充满更多难以预料的事。亲身经历、生动的图片和鲜活的例子比发生在别人身上的事、单纯的文字或是统计数据更容易让人回想起来。一个与你相关的判决错误会逐渐削弱你对司法体系的信任度,其影响程度比你在报纸上读到类似事件的影响更深。
你可以尽可能地抵制如此之多的潜在的可得性偏见,但那样做会令你身心俱疲。你必须通过自问一些问题努力重新审视自己的印象和直觉,比如“我们是否会因为小区内最近发生了几起偷盗事件就认为青少年盗窃是个严重问题”或者“我认识的人去年没有得感冒的,我是不是就没必要打免疫针了呢”。时刻对偏见保持警惕是件累人的事,但由此便可避免一个代价高昂的错误,因此付出努力也是值得的。
有个很著名的可得性实验表明,意识到自己的偏见可以使夫妻和睦相处,而且很可能在其他的合作计划中与他人的关系也很融洽。在一项广为人知的研究中,研究人员问夫妻双方的问题是:你为保持此地整洁作了多大贡献?用百分比来表示。此外,夫妻俩还回答了如“倒垃圾”、“发起社交互动”等类似问题。那么这两位自我估测的贡献率合计能达到100%吗,是更多或者更少?不出所料,他们自我估测的贡献率合计超过了100%。一个简单的可得性偏见就可以对此作出解释:夫妻二人记自己的努力和贡献比记对方的清楚得多,而且可得性的不同导致了对频率判断的不同。偏见不一定是自私的:这对夫妻还过多地将两人的争执归因于自己,尽管这一比例比两人在那些积极正面的事件中的自评比例小得多,但也是难能可贵了。同样的偏见对常见的观察同样适用,很多合作团队成员感觉他们做的事超出了自己的分内工作,还感到其他人并不感激自己作出的贡献。
我通常对人们控制偏见的潜能不是很乐观,但这次例外。成功去除偏见的案例还是存在的,即我们可以很轻松地识别出功劳分配问题是何时出现的,尤其当几个人同时感到他们的努力没有得到足够的认同时更是如此。自己周围的那些人通常也会付出超出100%的努力工作,只要你看到这一点有时就足以缓和这种(心理失衡)情形。任何情况下,每个人都该牢记这一点。你做的事情偶尔会超出自己的分内事,但你应该知道,当你有可能有这种感觉的时候,你的团队里的每个成员也都可能有同感。
可得性偏见会影响我们对自己或他人的看法
20世纪90年代早期,人们对可得性启发法的理解有了重大进展。那时,由诺伯特·施瓦茨(Norbert Schwarz)领导的一组德国心理学家提出了一个有趣的问题:人们对某件事发生频率的印象是如何受到列举实例的具体数目这一要求的影响的?
设想你自己就是那个实验的受试者:
首先,列出6个你果断行事的例子。
接下来评判一下你有多果断。
假如有人要求你列12件自己表现得果断的事(大多数人都会觉得很难列出这么多件事)。你对自己果断程度的判定会有所不同吗?