必读网 - 人生必读的书

TXT下载此书 | 书籍信息


(双击鼠标开启屏幕滚动,鼠标上下控制速度) 返回首页
选择背景色:
浏览字体:[ ]  
字体颜色: 双击鼠标滚屏: (1最慢,10最快)

生命是什么

_2 埃尔温·薛定谔 (奥)
  35. 分子
  
  在原子选定的一组不连续状态中间,不一定是、但可以是使核彼此紧密靠拢的最低能级。在这种状态中,原子组成了分子。这里有一点是要着重指出的,即分子必须具有一定的稳定性;除非外界供给它以“提高”到邻近的较高能级所需的能量差额,否则,构型是不会改变的。因此,这种数量十分确定的能级差是定量地决定了分子的稳定程度。我们将会观察到,这个事实同量子论的基础本身,也就是同能级图式的不连续性的联系是多么的密切。
  
  我必须请读者姑且认为这些观点的体系已经被化学事实彻底地核实过了;而且它已经证明在解释化学原子价的基本事实和关于分子结构的许多细节,如它们的结合能,它们在不同温度下的稳定性等方面是成功的。我是无法详细地加以检验的。
  
  36. 分子的稳定性有赖于温度
  
  我们必须因考察了生物学问题中最有兴趣的一点,即不同温度下的分子稳定性而感到满足。假定我们的原子系统一开始确实是处在它的最低能级的状态。物理学家称之为绝对零度下的分子。要把它提高到相邻的较高的状态或能级,就需要供给一定的能量。最简单的供给能量的方式是给分子“加热”。把它带进一个高温环境(“热浴”),让别的系统(原子,分子)冲击它。考虑到热运动的完全不规则性,所以不存在一个可以肯定的、并立即引起“提高”的、截然分明的温度界限。更确切地说,在任何温度下(只要不是绝对零度),都有出现“提高”的机会,这种机会是有大有小的,而且当然是随着“热浴”的温度而增加的。表达这种机会的最好的方式是,指出在发生“提高”以前你必须等待的平均时间,即“期待时间”。
  
  根据M.波拉尼和E.维格纳的研究,“期待时间”主要取决于二种能量之比,一种能量正好就是为了“提高”而需要的能量差额本身(我们用W来表示),另一种能量是描述在有关的温度下热运动强度的特性(我们用T表示绝对温度,kT表示特有的能量)。有理由认为,实现“提高”的机会愈小,期待时间便愈长,而“提高”本身同平均热能相比也就愈高,就是说,W:kT之比值的相当小的变化,会大大地影响期待时间。例如(按照德尔勃留克的例子),W是kT的三十倍,期待时间可能只短到1/10秒;但当W是kT的五十倍时,期待时间将延长到十六个月;而当W是kT的六十倍时,期待时间将延长到三万年!
  
  对于那些对数学感兴趣的读者来说,可以用数学的语言来说明这种对于能级或温度变化高度敏感的理由,同时再加上一些类似的物理学的说明。其理由是,期待时间(称之为t)是通过指数函数的关系依赖于W/kT之比的;于是
  
  t=cEXP(W/kT)
  
  c是10的-13或-14次方秒这么小的数量级的常数。这个特定的指数函数并不是一种偶然的特性。它一再出现在热的统计学理论中,似乎构成了该理论的基本内容。它是在系统的某个部分中,偶然地聚集象W那么大的能量的不可能性的几率的一种度量。当需要有好几倍的“平均能量”kT时,增加得如此巨大的就是这种不可能性的几率。
  
  实际上,W=30kT(见上面引用的例子)已经是极少有的了。当然,它之所以还没有导致很长的期待时间(在我们的例子中只有1/10秒),是由于c因子是很小的缘故。这个因子具有物理学的意义。它是整个时间内,在系统里发生的振动周期的数量级。你可以非常概括地描述这个因子,认为它是积聚起所需要的W总数的机会,它虽然很小,可是在“每一次振动”里是一再出现的,就是说,每秒大约有10的13或14次方次。
  
  38. 第一个修正
  
  提出这些理由作为分子稳定性理论时,就已经是默认了我们称之为“提高”的量子跃迁如果不是导致完全的分解,至少也是导致相同的原子构成了本质上不同的构型——一种同分异构分子,正如化学家说的,那是由相同的一些原子按不同的排列所组成的分子(应用到生物学上时,它就代表同一个“位点”上的不同的“等位基因”,量子跃迁则代表突变)。
  
  对这个解释,必须作两点修正,为了使人们易于了解,我有意把它说得简单化些。根据我所讲的,可能会认为只有在极低的能量状态下,一群原子才会组成我们所说的分子,而下一个比较高的状态已经是“别的一些东西”了。并不是这样的。事实上,即使在最低能级的后面,还有着一系列密集的能级,这些能级并不涉及到整个构型的任何可以察觉的变化,而只是对应于原子中间的那些微小的振动,这种振动我们在第37节里已经讲了。它们也都是“量子化”的,不过是以较小的不子从一个能级跳到相邻的能级。因此,在低温下,“热浴”粒子的碰撞已足以造成振动。如果分子是一种伸展的结构,你可以把这些振动想象为穿过分子而不发生任何伤害的高频声波。
  
  所以,第一个修正并不是十分重大的:我们可以不去理会能级图式的“振动的精细结构”。“相邻的较高能级”这个术语可以这样来理解,即与构型的改变相对应的相邻的能级。
  
  39. 第二个修正
  
  第二个修正解释起来更加困难,因为它关系到各种能级图式的某种重要而又复杂的特性。两个能级之间的自由通道也许被阻塞了,更谈不上供给所需要的能量了;事实上,甚至从比较高的状态到比较低的状态的通路也可能阻塞了。
  
  让我们从经验事实谈起吧。化学家都知道,相同的原子团结合组成分子的方式不止一种。这种分子叫做同分异构体(“由同样的成分组成的”)。同分异构现象不是一种例外,而是一种规律。分子愈大,提供的同分异构体也就愈多。一种最简单的情况,即同样由三个碳原子八个氢原子和一个氧原子所组成的两种丙醇。氢和碳之间氧都能够插入,但只有两种情况才是不同的物质。它们确实也是如此。它们所有的物理常数和化学常数都是明显不同的。它们的能量也不同,代表了“不同的能级”。
  
  值得注意的是两个分子都是完全稳定的,它们的行为就象它们都是处于“最低状态”。不存在从一种状态到另一种状态的自发转变。
  
  理由是两种构型并不是相邻的构型。要从一种构型转变为另一种构型,只能通过介乎两者之间的中间构型才能发生,这种中间构型的能量比它们当中的任何一种构型都要高。粗浅地说,氧必须从一个位置抽出来,插到另一个位置上。如果不经过能量相当高的构型,看来是无法完成这种转变的。
  
  现在可以提出我们的“第二修正”了,即这一类“同分异构体”的变化,是在生物学应用中我们唯一感到兴趣的一种变化。这些变化就是我们在第35节到37节中解释“稳定性”时所必须牢记的。我们所说的“量子跃迁”,就是从一种相对稳定的分子构型变到另一种构型。供给转变所需的能量(其数量用W表示)并不是真正的能级差,而是从初级能量上升到阈的步阶。
  
  在初态和终态之间不介入阈能的转变是毫无意义的,这不仅在生物学应用上是如此。这种转变对分子的化学稳定性确实是毫无作用的,为什么呢?因为它们没有持久的效应,它们是不引人注意的。由于没有什么东西阻止它们的回路,所以当它们发生转变时,几乎就立刻回复到初态了。
第五章 对德尔勃留克模型的讨论和检验
  确实的,正如光明显出了它自身,也显出了黑暗一样,于是,真理是它自身的标准,也是谬误的标准。
  ——斯宾诺莎《伦理学》第二部分,命题43
  
  40. 遗传物质的一般图景
  
  根据这些事实,可以很简单地回答我们的问题,就是说:由少量原子组成的这些结构,能否长时间地经受住象遗传物质不断受到的那种热运动的干扰影响?我们将假定一个基因的结构是一个巨大的分子,只能发生不连续的变化,这种变化是在于原子的重新排列并导致一种同分异构的分子。这种重新排列也许只影响到基因中的一小部分区域,大量的各种不同的重新排列也许是可能的。从任何可能的同分异构体中,把实际的构型分离出来的阈能一定是很高的(这是同一个原子的平均热能相比),以致使这种变化成为一种罕有事件。这种罕有事件我们认为就是自发突变。
  
  本章的以后几部分将致力于检验基因和突变的一般描述(主要应归功于德国物理学家M.德尔勃留克),把它同遗传学事实作详细的比较。在此之前,我们可以对这一理论的基础和一般性质适当地作些评论。
  
  41. 图景的独特性
  
  为生物学问题去穷根究底,并把图景建立在量子力学的基础之上,这是绝对必要的吗?基因是一个分子,这样的猜测,我敢说,在今天已是老生常谈了。不管他是不是熟悉量子论,不同意这种猜测的生物学家是很少的了。在第32节中,我们大胆地适用了量子论问世以前的物理学家的语言,作为观察到的不变性的唯一合理的解释。随后是关于同分异构性,阈能,W:kT在决定同分异构体变化几率中的重要作用等因素的理由——所有这一切理由,都可以在纯粹经验的基础上很好地加以说明;不管怎样,反正都不是来源于量子论的。既然在这本小册子里,我不能真正地把它讲清楚,而且还可能使许多读者感到厌烦,那我为什么还要如此强烈地坚持量子力学的观点呢?
  
  量子力学是根据一些最好的原理来说明自然界中实际碰到的、原子的各种集合体的第一个理论方法。海特勒-伦敦键是这个理论的一个独特的特点,但是这个理论并不是为了解释化学键而发明的。它是以一种十分有趣而且费解的方式出现的,是根据完全不同的理由强加给我们的。现已证明,这个理论同观察到的化学事实是十分吻合的,而且,正如我所说的,这是一个独特的特点,由于对这个特点有足够的了解,所以可以相当肯定地说,在量子论的进一步发展中,“不可能再发生这样的事情了”。
  
  因此,我们可以满有把握地断言,除了遗传物质的分子解释外,不再有别的解释了。在物理学方面不再有别的可能性可以解释遗传物质的不变性。如果德尔勃留克的描述是不管用的,那么,我们将不得不放弃作进一步的尝试。这是我想说明的第一点。
  
  42. 一些传统的错误概念
  
  但是,也许可以问:除了分子以外,难道真的就没有由原子构成的、其他的可以持久的结构了吗?比如,埋在坟墓里一、二千年的一枚金币,难道不是保留着印在它上面的人像的模样吗?这枚金币确实是由大量原子构成的,但在这个例子中,我们肯定不会把这种形象的保存归因于巨大数字的统计。这种说法同样也适用于我们发现蕴藏在岩石里的、经过几个地质时代而没有发生变化的一批明莹的晶体。
  
  这就引出了我要说明的第二点。一个分子,一个固体,一块晶体的情况并没有真正的差别。从现代的知识来看,它们实质上是相同的。不幸的是,学校的教学中还保持着好多年前就已过时了的传统观念,从而模糊了对实际事态的了解。
  
  其实,我们在学校里学到的有关分子的知识,并没有讲到分子对固态的相似程度比对液体或气态更为接近的观点。相反,教给我们的是要仔细地区分物理变化和化学变化;物理变化如熔化或蒸发,在这种变化中,分子是保持着的(比如酒精,不管它是固体、液体还是气体,总是由相同的分子C2H6O组成的)。化学变化如酒精的燃烧,在那里,一个酒精分子同三个氧分子经过重新排列生成了二个二氧化碳分子和三个水分子。
  
  关于晶体,我们学到的是它们形成了周期性的三向堆叠的晶格,晶格里的单个分子的结构有时是可以识别的,酒精和许多有机化合物就是如此;在其他的晶体中,比如岩盐(氯化钠,NaCl),氯化钠分子是无法明确地区分界限的,因为每个钠原子被六个氯原子对称地包围着,反过来也是如此;所以说,如果有钠氯原子对的话,那么,不管哪一对都可以看作是氯化钠分子的组成。
  
  最后,我们还学到,一个固体可以是晶体,也可以不是晶体,后一种情况,我们称之为无定形的固体。
  
  43. 物质的不同的“态”
  
  目前,我还没有走得那么远,想把所有这些说法和区别都说成是错误的。它们在实际应用中往往是有用的。但在物质结构的真实性方面,必须用完全不同的方法划清一些界限。基本的区别在下面的“等式”的等号之间:
  
  分子=固体=晶体
  气体=液体=无定形的固体
  
  对这些说法,我们必须作简要的说明。所谓无定形的固体,要么不是真正的无定形,要么不是真正的固体。在“无定形的”木炭纤维里,X射线已经揭示出石墨晶体的基本结构。所以,木炭是固体,但也是晶体。在我们还没有发现晶体结构的地方,我们必须把它看作是“粘性”(内摩擦)极大的一种液体。这样一种没有确定熔化温度和熔化潜热的物质,表明它不是一种真正的固体。将它加热时,它逐渐地软化,最后液化而不存在不连续性(我记得在第一次世界大战末期,在维也纳曾经有人给我们象沥青那样的东西作为咖啡的代用品。它是这么硬,必须在它出现光滑的贝壳似的裂口时,用凿子或斧头把它砸成碎片。可是,过一段时间后,它会变成液体,如果你很蠢地把它搁上几天,它就会牢牢地粘在容器的底部)。
  
  气态和液体的连续性是非常熟悉的事情。可以用“围绕”所谓临界点的方法,使任何一种气体液化,也就没有什么不连续性。但这个问题我们在这里不准备多谈了。
  
  44. 真正重要的区别
  
  这样,上述图式中除了主要之点外,我们都已证明是有道理的;这个主要之点就是我们想把一个分子看成是一种固体=晶体。
  
  这一点的理由是,把一些原子,不管它有多少,结合起来组成分子的力的性质,同把大量原子结合起来组成真正的固体——晶体的力的性质是一样的。分子表现出同晶体一样的结构稳固性。要记住,我们正是从这种稳固性来说明基因的不变性的!
  
  物质结构中真正重要的区别在于原子是不是被那种“起稳固作用的”海特勒-伦敦力结合在一起。在固体中和在分子中,原子是这样结合的。在单原子的气体中(比如水银蒸气),它们就不是那样了。在分子组成的气体中,只是在每个分子中,原子才是以这种方式结合在一起的。
  
  45. 非周期性的固体
  
  一个很小的分子也许可以称为“固体的胚”。从这样一个小的固体胚开始,看来可以有两种不同的方式来建造愈来愈大的集合体。一种是在三个方向上一再重复同一种结构的、比较乏味的方式。这是一个正在生长中的晶体所遵循的方式。周期性一旦建立后,集合体的大小就没有一定的限度了。另一种方式不用那种乏味的重复的图样,而是建造愈来愈扩大的集合体。那就是愈来愈复杂的有机分子,这种分子里的每一个原子,以及每一群原子都起着各自的作用,跟其他的原子起的作用(比如在周期性结构里的原子)是不完全相同的。我们可以恰当地称之为一种非周期性的晶体或固体,并且可以用这样的说法来表达我们的假说:我们认为,一个基因——也许是整个染色体纤丝——是一种非周期性的固体。
  
  46. 压缩在微型密码里的内容的多样性
  
  经常会碰到这样的问题:象受精卵细胞核这样小的物质微粒,这么能包含了涉及有机体未来的全部发育的精细的密码正本呢?一种赋予足够的抗力来永久地维持其秩序的、秩序井然的原子结合体,看来是一种唯一可以想象的物质结构,这种物质结构提供了各种可能的(“异构的”)排列,在它的一个很小的空间范围内足以体现出一个复杂的“决定”系统。真的,在这种结构里,不必有大量的原子就可产生出几乎是无限的可能的排列。为了把问题讲清楚,就想到了莫尔斯密码。这个密码用点(“?”)、划(“-”)两种符号,如果如果每一个组合用的符号不超过四个,就可以编成三十种不同的代号。现在如果你在点划之外再加上第三种符号,每一个组合用的符号不超过十个,你就可以编出88572个不同的“字母”;如果用五种符号,每一个组合用的符号增加到25个,那编出的字母可以有37529846191405个。
  
  可能有人会不同意,他们认为这个比喻是有缺点的,因为莫尔斯符号可以有各种不同的组合(比如,?--和??-)因此与同分异构体作类比是不恰当的。为了弥补这个缺点,让我们从第三种情况中,只挑出25个符号的组合,而且只挑出由五种不同的符号、每种符号都是五个所组成的那种组合(就是由五个点,五个短划……等组成的组合)。粗粗地算一下,组合数是62330000000000个,右边的几个零代表什么数字,我不想化气力去算它了。
  
  当然,实际情况决不是原子团的“每一种”排列都代表一种可能的分子;而且,这也不是任意采用什么样的密码的问题,因为密码正本本身必定是引起发育的操纵因子。可是,另一方面,上述例子中选用的数目(25个)还是很少的,而且我们也只不过设想了在一条直线上的简单排列。我们希望说明的只不过是,就基因分子的图式来说,微型密码是丝毫不错地对应于一个高度复杂的特定的发育计划,并且包含了使密码发生作用的手段,这一点已经不再是难以想象的了。
  
  47. 与事实作比较:稳定性的程度;突变的不连续性
  
  最后,让我们用生物学的事实同理论的描述作比较。第一个问题显然是理论描述能否真正说明我们观察到的高度不变性。所需要的阈值数量--平均热能kT的好多倍--是合理的吗?是在普通化学所了解的范围之内吗?这些问题是很寻常的,不用查表据可肯定地回答。化学家能在某一温度下分离出来的任何一种物质的分子,在那个温度下至少有几分钟的寿命(这是说得少一点,一般说来,它们的寿命要长得多)。这样,化学家碰到的阈值,必定正好就是解释生物学家可能碰到的那种不变性所需要的数量级;因为根据第36节的描述,我们会记得在大约1:2的范围内变动的阈值,可以说明从几分之一秒到几万年范围内的寿命。
  
  为了今后的参考,我提一些数字。第36节的例子里提到的W/kT之比,是:W/kT=30,50,60,分别产生的寿命是1/10秒,16个月,30000年。在室温下,对应的阈值是0.9,1.5,1.8电子伏。必须解释一下“电子伏”这个单位,这对物理学家来说是很方便的,因为它是可以具体化的。比如,第三个数字(1.8)就是值被2伏左右的电压所加速的一个电子,将获得正好是足够的能量去通过碰撞而引起转变(为了便于作比较,一个普通的袖珍手电筒的电池有3伏)。
  
  根据这些理由可以想象到,由振动能的偶然涨落所产生的、分子某个部分中的构型的一种异构变化,实际上是十足的罕有事件,这可以解释为一次自发突变。因此,我们根据量子力学的这些原理,解释了关于突变的最惊人的事实,正是由于这个事实,突变才第一次引起了德弗里斯的注意,就是说,突变是不出现中间形式的,而是“跃迁式”的变异。
  
  48. 自然选择的基因的稳定性
  
  在发现了任何一种电离射线都会增加自然突变率以后,人们也许会认为自然率起因于土壤和空气中的放射性,以及宇宙射线。可是,与X射线的结果作定量的比较,却表明“天然辐射”太弱了,只能说明自然率的一小部分。
  
  倘若我们用热运动的偶然的涨落来解释罕有的自然突变,那么,我们就不会感到太惊奇了,因为自然界已成功地对阈值作出了巧妙的选择,这种选择必然使突变成为罕见的。因为频繁的突变对进化是有害的,这是在前几节中已经得出的结论。一些通过突变得到不很稳定的基因构型的个体,它们那些“过分频繁的”、迅速地在发生突变的后代能长期生存下去的机会是很小的。物种将会抛弃这些个体,并将通过自然选择把稳定的基因集中起来。
  
  49. 突变体的稳定性有时是较低的
  
  至于在我们的繁育试验中出现的、被我们选来作为突变体以研究其后代的那些突变体,当然不能指望它们都表现出很高的稳定性。因为它们还没有经受过“考验”--或者,如果说是已经受过“考验”了,它们却在野外繁殖时被“抛弃”了--可能是由于突变可能性太高的缘故。总而言之,当我们知道有些突变体的突变可能性比正常的“野生”基因要高得多的时候,我们是一点也不感到奇怪的。
  
  50. 温度对不稳定基因的影响小于对稳定基因的影响
  
  这一点使我们能够检验我们的突变可能性的公式:t=cEXP(W/kT)(我们还记得,t是对于具有阈能W的突变的期待时间。)我们问:t是如何随温度而变化的?从上面的公式中,我们很容易找到温度为T+10时的t值同温度为T时的t值之比的近似值=EXP(-10W/kT)。
  
  指数是负数,比率当然小于1。温度上升则期待时间减少,突变可能性就增加。现在可以检验了,而且已经在果蝇受得了的温度范围内,用果蝇作了检验。乍看起来,这个结果是出乎意料的。野生基因的低的突变可能性明显地提高了,可是一些已经突变了的基因的较高的突变可能性却并未增加,或者说,增加很少。这种情况恰恰是我们在比较两个公式时预期到的。根据第一个公式,要想使t增大(稳定的基因)就要求W/kT的值增大;而根据第二个公式,W/kT的值增大了,就会使算出来的比值减小,就是说,突变可能性将随着温度而有相当的提高。(实际的比值大约在1/2到1/5之间。其倒数2-5是普通化学反应中所说的范霍夫因子。)
  
  51. X射线是如何产生突变的
  
  现在转到X射线引起的突变率,根据繁育试验我们已经推论出,第一(根据突变率和剂量的比例),一些单一事件引起了突变;第二(根据定量的结果,以及突变率取决于累积的电离密度而同波长无关的事实),为了产生一个特定的突变,这种单一事件必定是一个电离作用,或类似的过程,它又必须发生在只有大约边长10个厘米距离的立方体之内。根据我们的描述,克服阈值的能量一定是由爆炸似的过程,如电离或激发过程所供给的。我所以称它为爆炸似的过程,是因为一个电离作用花费的能量(顺便说一下,并不是X射线本身花费的,而是它产生的次级电子所耗用掉的),有30个电子伏,大家很清楚,这是相当大的。这样,在放电点周围的热运动必定是大大地增加了,并且以原子强烈振动的“热波”形式从那里散发出来。这种热波仍能供给大约10个原子距离的平均“作用范围”内所需的一、二个电子伏的阈能,这也不是不可想象的。话虽这么说,一个没有偏见的物理学家也许会预料到,存在着一个更小的作用范围。在许多情况下,爆炸的效应将不是一种正常的异构转变,而是染色体的一种损伤,通过巧妙的杂交,使得没有受到损伤的那条染色体(即第二套染色体中与受损伤的染色体对应配对的那一条),被相应位点上的基因是病态的一条染色体所替换时,这种损伤就是致死的。所有这一切,全是可以预期的,而且观察到的也确是如此。
  
  52. X射线的效率并不取决于自发的突变可能性
  
  其他一些特性,如果并没有象图式所预言的那样出现,那么,供给上面讲的致死损伤也就容易理解了。例如,一个不稳定的突变体的X射线突变率,平均起来并不高于稳定的突变体。现在,就拿供给30个电子伏那里的爆炸来说,所需的阈能不管是大还是小,比如说,1伏或1.3伏,你肯定不能指望30个电子伏会造成许多差别。
  
  53. 回复突变
  
  有些情况下,转变是从两个方向上来研究的,比如说,从一个确定的“野生”基因变到一个特定的突变体,再从那个突变体变回到野生基因。这种情况下,自然突变率有时几乎是相等的,有时却又很不相同。乍看起来,这是难以理解的,因为这两种情况下要克服的阈似乎是相等的。可是,它当然不是这种情况,因为它必须根据开始时的构型的能级来计算,而且野生基因和突变基因的能级可能是不同的。
  
  总之,我认为德尔勃留克的“模型”是经得起检验的,我们有理由在进一步的研究中应用它。
第六章 有序,无序和熵
  肉体不能决定灵魂去思维,灵魂也不能决定肉体去运动、静止或从事其他活动。
  ——斯宾诺莎《伦理学》第三部分,命题2
  
  54. 从模型得出的一个值得注意的一般结论
  
  让我引用第46节最后的一句话,在那句话里,我试图说明的是,根据基因的分子图来看,“微型密码同一个高度复杂而特定的发育计划有着一对一的对应关系,并包含着使密码发生作用的手段”,这至少是可以想象的。这很好,那么它又是如何做到这一点的呢?我们又如何从“可以想象的”变为真正的了解呢?
  
  德尔勃留克的分子模型,在它整个概论中似乎并未暗示遗传物质是如何起作用的。说实话,我并不指望在不久的将来,物理学会对这个问题提供任何详细的信息。不过,我确信,在生理学和遗传学指导下的生物化学,正在推进这个问题的研究,并将继续进行下去。
  
  根据上述对遗传物质结构的一般描述,还不能显示出关于遗传机制的功能的详细信息。这是显而易见的。但是,十分奇怪的是,恰恰是从它那里得出了一个一般性的结论,而且我承认,这是我写这本书的唯一动机。
  
  从德尔勃留克的遗传物质的概述中可以看到,生命物质在服从迄今为止已确定的“物理学定律”的同时,可能还涉及到至今还不了解的“物理学的其他定律”,这些定律一旦被揭示出来,将跟以前的定律一样,成为这门科学的一个组成部分。
  
  55. 秩序基础上的有序
  
  这是一条相当微妙的思路,不止在一个方面引起了误解。本书剩下的篇幅就是要澄清这些误解。在以下的考虑中,可以看到一种粗糙的但不完全是错误的初步意见:
  
  我们所知道的物理学定律全是统计学定律,这在第一章里已作了说明。这些定律同事物走向无序状态的自然倾向是大有关系的。
  
  但是,要使遗传物质的高度持久性同它的微小体积协调一致,我们必须通过一种“虚构的分子”来避免无序的倾向。事实上,这是一种很大的分子,是高度分化的秩序的杰作,是受到了量子论的魔法保护的。机遇的法则并没有因这种“虚构”而失效,不过,它们的结果是修改了。物理学家很熟悉这样的事实,即物理学的经典定律已经被量子论修改了,特别是低温情况下。这样的例子是很多的。看来生命就是其中一例,而且是一个特别惊人的例子。生命似乎是物质的有序和有规律的行为,它不是完全以它的从有序转向无序的倾向为基础的,而是部分地基于那种被保持着的现存秩序。
  
  对于物理学家--仅仅是对他来说--我希望,这样说了以后,能更清楚地讲明我的观点,即生命有机体似乎是一个宏观系统,它的一部分行为接近于纯粹机械的(与热力学作比较),当温度接近绝对零度,分子的无序状态消除的时候,所有的系统都将趋向于这种行为。
  
  非物理学家发现,被他们作为高度精确的典范的那些物理学定律,竟以物质走向无序状态的统计学趋势作为基础,感到这是难以相信的。在第一章里,我已举过一个例子。涉及到的一般原理就是有名的热力学第二定律(熵的原理),以及它的同样有名的统计学基础。在第56到60节里,我想扼要地说明熵的原理对一个生命有机体宏观行为的意义--这时完全可以忘掉关于染色体、遗传等已经了解的东西。
  
  56. 生命物质避免了趋向平衡的衰退
  
  生命的特征是什么?一块物质什么时候可以说是活的呢?那就是当它继续在“做某些事情”,运动,新陈代谢,等等,而且可以指望它比一块无生命物质在相似情况下“维持生活”的时间要长得多。当一个不是活的系统被分离出来,或是放在一个均匀的环境里的时候,由于各种摩擦阻力的结果,所有的运动往往立即陷于停顿;电势或化学势的差别消失了,倾向于形成化学化合物的物质也是这种情况,温度由于热的传导而变得均一了。在此以后,整个系统衰退成死寂的、无生气的一团物质。这就达到了一种永恒不变的状态,不再出现可以观察到的事件。物理学家把这种状态称为热力学平衡,或“最大值的熵”。
  
  实际上,这种状态经常是很快就达到的。从理论上来说,它往往还不是一种绝对的平衡,还不是熵的真正的最大值。最后达到平衡是十分缓慢的。它可能是几小时、几年、几个世纪……。举一个例子,这是接近平衡还算比较快的一个例子:倘若一只玻璃杯盛满了清水,第二只玻璃杯盛满了糖水,一起放进一只密封的、恒温的箱子里。最初好象什么也没有发生,产生了完全平衡的印象。可是,隔了一天左右以后,可注意到清水由于蒸汽压较高,慢慢地蒸发出来并凝聚在糖溶液上。糖溶液溢出来了。只有当清水全部蒸发后,糖才达到了均匀地分布在所有水中的目的。
  
  这些最后是缓慢地向平衡的趋近,决不能误认为是生命。在这里我们可以不去理会它。只是为了免得别人指责我不够准确,所以我才提到它。
  
  57. 以“负熵”为生
  
  一个有机体能够避免很快地衰退为惰性的“平衡”态,似乎成了如此难解之谜,以致在人类思想的最早时期,曾经认为有某种特殊的非物质的力,或超自然的力(活力,“隐得来希”)在有机体里起作用,现在还有人是这样主张的。
  
  生命有机体是怎样避免衰退的呢?明白的回答是:靠吃、喝、呼吸以及(植物是)同化。专门的术语叫“新陈代谢”。这词来源于希腊字,意思是变化或交换。交换什么呢?最初的基本观点无疑是指物质的交换(例如,新陈代谢这个词在德文里就是指物质的交换)。认为物质的交换应该是本质的东西的说法是荒谬的。氮、氧、硫等的任何一个原子和它同类的任何另一个原子都是一样的,把它们进行交换又有什么好处呢?过去有一个时候,曾经有人告诉我们说,我们是以能量为生的。这样,使我们的好奇心暂时地沉寂了。在一些很先进的国家(我记不清是德国还是美国,或者两个国家都是)的饭馆里,你会发现菜单上除了价目而外,还标明了每道菜所含的能量。不用说,这简直是很荒唐的。因为一个成年有机体所含的能量跟所含的物质一样,都是固定不变的。既然任何一个卡路里跟任何另一个卡路里的价值是一样的,那么,确实不能理解纯粹的交换会有什么用处。
  
  在我们的食物里,究竟含有什么样的宝贵东西能够使我们免于死亡呢?那是很容易回答的。每一个过程、事件、事变--你叫它们什么都可以,一句话,自然界中正在进行着的每一件事,都是意味着它在其中进行的那部分世界的熵的增加。因此,一个生命有机体在不断地增加它的熵--你或者可以说是在增加正熵--并趋于接近最大值的熵的危险状态,那就是死亡。要摆脱死亡,就是说要活着,唯一的办法就是从环境里不断地汲取负熵,我们马上就会明白负熵是十分积极的东西。有机体就是赖负熵为生的。或者,更确切地说,新陈代谢中的本质的东西,乃是使有机体成功地消除了当它自身活着的时候不得不产生的全部的熵。
  
  58. 熵是什么?
  
  熵是什么?我首先要强调指出,这不是一个模糊的概念或思想,而是一个可以计算的物理学的量,就象是一根棍棒的长度,物体的任何一点上的温度,某种晶体的熔化热,以及熔化一种物体的比热等。在温度处于绝对零度时(大约在-273℃),任何一种物体的熵等于零。当你以缓慢的、可逆的、微小的变化使物体进入另一种状态时(甚至因此而使物体改变了物理学或化学的性质,或者分裂为两个或两个以上物理学或化学性质不同的部分),熵增加的总数是这样计算的:在那个步骤中你必须供给的每一小部分热量,除以供给热量时的绝对温度,然后把所有这些求得的商数加起来。举一个例子,当你熔解一种固体时,它的熵的增加数就是:熔化热除以熔点温度。由此,你可看到计算熵的单位是卡/度(摄氏)(就象卡是热量的单位或厘米是长度的单位一样)。
  
  59. 熵的统计学意义
  
  为了消除经常笼罩在熵上的神秘气氛,我已简单地谈到了这个术语的定义。这里对我们更为重要的是有序和无序的统计学概念的意义,它们之间的关系已经由玻尔兹曼和吉布斯在统计物理学方面的研究所揭示。这也是一种精确的定量关系,它的表达式是:熵=klogD,k是所谓的玻尔兹曼常数(=3.2983E-24卡/℃),D是有关物质的原子无序状态的数量量度。要用简短的非专业性的术语对D这个量作出精确的解释几乎是不可能的。它所表示的无序,一部分是那种热运动的无序,另一部分是存在于随机混合的、不是清楚地分开的各种原子或分子中间的无序。例如,上面例子中的糖和水的分子。这个例子可以很好地说明玻尔兹曼的公式。糖在所有水面上逐渐地“溢出”就增加了无序D,从而增加了熵(因为D的对数是随D而增加的)。同样十分清楚的是,热的任何补充都是增加热运动的混乱,就是说增加了D,从而增加了熵。为什么应该是这样情况呢?只要看下面的例子就更加清楚了,那就是,当你熔化一种晶体时,因为你由此而破坏了原子或分子的整齐而不变的排列,并把晶格变成了连续变化的随机分布了。
  
  一个孤立的系统,或一个在均匀环境里的系统(为了目前的考虑,我们尽量把它们作为我们所设想的系统的一部分),它的熵在增加,并且或快或慢地接近于最大值的熵的惰性状态。现在我们认识到,这个物理学的基本定律正是事物接近混乱状态的自然倾向(这种倾向,跟写字台上放着一大堆图书、纸张和手稿等东西表现出的杂乱情况是同样的),除非是我们在事先预防它。(在这种情况下,同不规则的热运动相类似的情况是,我们不时地去拿那些图书杂志等,但又不肯化点力气去把它们放回原处。)
  
  60. 从环境中引出“有序”以维持组织
  
  一个生命有机体通过不可思议的能力来推迟趋向热力学平衡(死亡)的衰退,我们如何根据统计学理论来表达呢?我们在前面说过:“以负熵为生”,就象是有机体本身吸引了一串负熵去抵消它在生活中产生的熵的增加,从而使它自身维持在一个稳定的而又很低的熵的水平上。
  
  假如D是无序的度量,它的倒数1/D可以作为有序的一个直接度量。因为1/D的对数正好是D的负对数,玻尔兹曼的方程式可以写成这样:负熵=klog(1/D)。
  
  因此,“负熵”的笨拙的表达可以换成一种更好一些的说法:取负号的熵,它本身是有序的一个量度。这样,一个有机体使它本身稳定在一个相当高的有序水平上(等于熵的相当低的水平上)的办法,确实是在于从它的环境中不断地吸取秩序。这个结论比它初看起来要合理些。不过,可能由于相当繁琐而遭到责难。其实,就高等动物而言,我们是知道这种秩序的,它们是完全以此为生的,就是说,被它们作为食物的、复杂程度不同的有机物中,物质的状态是极有序的。动物在利用这些食物以后,排泄出来的是大大降解了的东西,然而不是彻底的分解,因为植物还能利用它。(当然,植物在日光中取得“负熵”的最有力的供应)
第七章 生命是以物理学定律为基础的吗?
  如果一个人从不自相矛盾的话,一定是因为他从来什么也不说。——乌那木诺
  
  61. 在有机体中可以指望有新的定律
  
  总之,在这最后一章中我希望阐明的是,根据我们已知的关于生命物质的结构,我们一定会发现,它的活动方式是无法归结为物理学的普遍定律的。这不是由于有没有什么“新的力量”在支配着生命有机体内单一原子的行为,只是因为它的构造同迄今在物理实验室中试验过的任何东西都是不一样的。浅显地说,一位只熟悉热引擎的工程师,在检查了一台电动机的构造以后,会发现它是按照他还没有懂得的原理在工作的。他会发现,他很熟悉的制锅用的铜,在这里却成了很长的铜丝绕成了线圈;他还会发现,他很熟悉的制杠杆和汽缸的铁,在这里却是嵌填在那些铜线圈的里面。他深信这是同样的铜和同样的铁,服从于自然界的同样的规律,这一点他是对的。可是,不同的构造却给他准备了一种全然不同的作功方式。他是不会认为电动机是由幽灵驱动的,尽管它不用蒸汽只要按一下开关就运转起来了。
  
  62. 生物学状况的评述
  
  在有机体的生命周期里展开的事件,显示出一种美妙的规律性和秩序性,我们碰到过的任何一种无生命物质都是无法与之匹敌的。我们发现,它是受一群秩序性最高的原子所控制的,在每个细胞的原子总数里,这种原子团只占了很小的一部分。而且,根据我们已经形成的关于突变机制的观点,我们断定,在生殖细胞的“占统治地位的原子”团里,只要很少一些原子的位置发生移动,就能使有机体的宏观的遗传性状中出现一个明显的改变。
  
  这些事实无疑是当代科学所揭示的最感兴趣的事实。我们也许会发现它们终究还不是不能接受的。一个有机体在它自身集中了“秩序之流”,从而避免了衰退到原子混乱--从合适的环境中“吸取秩序”--这种惊人的天赋似乎同“非周期性固体”,即染色体分子的存在有关。这种固体无疑代表了我们所知道的最高级的有序的原子集合体--比普通的周期性晶体的有序高得多--它是靠每个原子和每个自由基在固体里发挥各自的作用。
  
  简单地说,我们亲眼看到了现存的秩序显示了维持自身和产生有序事件的能力。这种说法听上去似乎是很有道理的。然而它之所以似乎有道理,无疑地是由于我们汲取了有关社会组织的经验和涉及到有机体活动的其他事件的经验。所以,它有点象一种恶性循环的论证。
  
  63. 物理学状况的综述
  
  不管怎样,必须反复强调的一点是,对于物理学家来说,这种事态非但不是似乎有道理的,而且是最令人鼓舞的,因为它是新奇的。同一般的看法相反,受物理学定律支配的事件的有规律的进程,决不是原子的一种高度有序的构型的结果--除非原子构型本身不象在周期性晶体里,也不象在由大量相同分子组成的液体或气体里那样地多次重复。
  
  甚至在化学家离体处理一种很复杂的分子时,还总是面临着大量的同样的分子。他把化学定律应用于这些分子。比如,他会告诉你,在某个开始了一分钟以后,有一半的分子起了反应,二分钟后四分之三的分子起了反应。可是,你如果能盯住某一个分子的进程,化学家也就无法预言这个分子究竟是在起了反应的分子中间,还是在还没有起反应的分子中间。这纯粹是个机遇的问题。
  
  这并不是一种纯理论性的推测。也不是说我们永远无法观察到一小群原子,或者甚至是单个原子的命运。有时我们是能观察到的,只有平均统扯一下才能产生规则性。第一章里我们举过一个例子。悬浮在液体中的一颗微粒的布朗运动,是完全不规则的。可是,如果有许多同样的微粒,它们将通过不规则的运动引起有规则的扩散现象。
  
  单个放射性原子的蜕变是观察得到的(它发射出一粒“子弹”,在荧光屏上会引起一次可见的闪烁现象)。可是,如果把单个放射性原子给你,它可能的寿命比一只健康的麻雀要短得多。真的,关于单个放射性原子只能这样说:只要它活着(而且可能活几千年),它在下一秒钟里毁灭的机会,不管机会是大还是小,总是相同的。这种明显地不存在单个的决定,结果还是产生了大量的、同一种放射性原子衰变的精确的指数定律。
  
  64. 明显的对比
  
  在生物学中,我们面临着一种完全不同的状况。只存在于一个副本中的单个原子团有秩序地产生了一些事件,并根据最微妙的法则,在相互之间以及同环境之间作难以置信的的调整。我说只存在于一个副本中,是因为我们毕竟还有卵和单细胞有机体的例子。在高等生物发育的以后阶段里,副本增多了,那是确实的。可是,增加到什么程度呢?我知道,在长成的哺乳动物中有的可达10的14次方。那是多少呢?只有一立方吋空气中的分子数目的百万分之一。数量虽然相当大,可是聚结起来时它们只不过形成了一小滴液体。你再看看它们实际分布的方式吧。每一个细胞正好容纳了这些副本中的一个(或二个,如果我们还记得二倍体),既然我们知道这个小小的中央机关的权力是在孤立的细胞里,那么,每个细胞难道不象是用共同的密码十分方便地互通消息的、遍布全身的地方政府的分支机构吗?
  
  这真是个异想天开的描述,有点象出自诗人的而不是科学家的手笔。然而,这并不需要诗人的想象,而只需要有明确而严肃的科学反映去认识我们现在面对着的事件,就是说,指挥这些事件有秩序地、有规则地展开的“机制”同物理学的“概率机制”完全是两码事。这些还只不过是观察到的事实而已,即每个细胞中的单个原子集合体之中,现在一份(有时是两份)副本中的单个原子集合体之中,而且它产生的事件却是有序的典范。对此,我们感到惊异也罢,认为它好象很有道理也罢,反正一个很小的可是高度组织化的原子团是能够以这种方式起作用的,这是新奇的情况,是生命物质以外任何地方都还不知道有的情况。研究无生命物质的物理学家和化学家们,从来没有看到过他们必须按这种方式来进行解释的现象。正因为以前没有提出过这种事例,所以我们的漂亮的统计学理论没有包括它,我们的统计学理论是很值得骄傲的,因为它使我们看到了幕后的东西,使我们注意到从原子和分子的无序中提出精确的物理学定律的庄严的有序;还因为它揭示了最重要的、最普遍的、无所不包的熵增加的定律是无需特殊的假设就可以理解的,因为熵并非别的东西,只不过是分子本身的无序而已。
  
  65. 产生有序的两种方式
  
  在生命的发展中遇到的秩序性有不同的来源。有序事件的产生,看来有两种不同的“机制”:“有序来自无序”的“统计学机制”,和“有序来自有序”的一种新机制。对于没有偏见的人来说,第二个原理似乎简单得多,合理得多。这是无疑的。正因为如此,所以物理学家是如此自豪地赞成另一种方式,即赞成“有序来自无序”的原理。在自然界中,不仅实际上是遵循这个原理,而且只有这个原理才使我们理解自然界事件的长期发展,首先是理解这种发展的不可逆性。可是,我们不能指望由此得出的“物理学定律”能直截了当地解释生命物质的行为,因为这些行为的最惊人的特点,是明显地主要以“有序来自有序”的原理为基础的。你不能指望两种全然不同的机制会提出同一种定律,正象你不能指望用你的弹簧锁钥匙去开你邻居的门。
  
  因此,我们不必因为物理学的普遍定律难以解释生命而感到沮丧。因为根据我们对生命物质结构的了解,这正是预料中的情况。我们必须准备去发现在生命物质中、占支配地位的新的物理学定律。这种定律,我们姑且不称它是一种超物理学定律,可是难道能称之为非物理学定律吗?
  
  66. 新原理并不违背物理学
  
  不,我不那么想。因为这个涉及到的新原理是真正的物理学原理:在我看来,这不是别的原理,只不过是量子论原理的再次重复。要说明这一点,我们就要说得详细些,包括对前面作出的所有物理学定律全以统计学为基础的论断作一番推敲,但不是作修正。
  
  这个一再重复的论断,是不可能不引起矛盾的。因为确实有很多现象,它们许多突出的特点是明显地直接以“有序来自有序”的原理为基础的,并且同统计学和分子的无序看来是毫无关系的。
  
  太阳系的秩序,行星的运动,几乎是无限期地维持着。此时此刻的星座是同金字塔时代的任何一个具体时刻的星座一脉相承的;从现在的星座可以追溯到那时的星座,反过来也是如此。曾经预测过历史上的日食和月食,并且发现这种预测同历史上的记载几乎是完全符号的,在某些情况下,甚至用来校正公认的年表。这些预测不包括任何一种统计学,它们是以牛顿的万有引力定律作为唯一的依据的。
  
  一台好的时钟,或者任何类似的机械装置的有规则运动,似乎跟统计学是无关的。总之,所有纯粹机械的事件,看来是明确而直接地遵循着“有序来自有序”的原理。如果我们说“机械的”,必须在广义上来使用这个名词。你们知道,有一种很有用的时钟,是以电站有规则地输送电脉冲来运转的。
  
  我记得马克斯?普朗克写过一篇很有意思的小文章,题目是《动力学型和统计学型的定律》(德文是《动力学和统计学的合法性》)。这两者的区别,正好就是我们在这里称之为“有序来自有序”和“有序来自无序”的区别。那篇文章旨在表明控制宏观事件的统计学型的定律,是如何由被认为是控制微观事件、即控制单原子和单分子的相互作用的“动力学”定律所组成的。宏观的机械现象,如行星或时钟的运动等,说明了后一种类型的定律。
  
  这样看来,被我们一本正经地当作了解生命的真正线索的“新原理”,即“有序来自有序”的原理,对物理学来说,完全不是新东西。普朗克甚至还摆出了论证它的优先权的架势。我们似乎得出了可笑的结论,即了解生命的线索是建立在纯粹机械论的基础之上的,是普朗克那篇文章所说的“钟表装置”的基础之上的。我看,这个结论既不是可笑的,也不是全错的,但是对它是“不可全信”的。
  
  67. 钟的运动
  
  让我们来精确地分析一台真的钟的运动。它决计不是一种纯粹机械的现象。一台纯粹机械的钟不必有发条,也不必上发条。它一旦开始运动,就将永远进行下去。一台真正的钟,如果不用发条,在摆动了几下以后就停摆了,它的机械能已转化为热能。这是一种无限复杂的原子过程。物理学家提出的这种运动的一般图景,迫使其承认相反的过程并不是完全不可能的:一台没有发条的钟,依靠消耗它自己的齿轮的热能和环境的热能,可能突然地开始走动了。物理学家一定会说:时钟体验了布朗运动的一次非常灵敏的扭力天平(静电计或电流计),就能一直发生这种事情。时钟当然是绝对不可能的。
  
  一台时钟的运动能否归因于动力学型或统计学型的合法事件(用普朗克的说明),这取决于我们的态度。称它为一种动力学现象时,我们是集中注意于有规则的运行,一根比较松的发条就可以产生这种运行,而这根发条克服的热运动的干扰是很微小的,所以我们可以忽略不计。可是,如果我们还记得,没有发条,时钟就会因摩擦阻力而渐渐地停摆,我们认为,这种过程只能理解为一种统计学的现象。
  
  然而,认为时钟中的摩擦效应和热效应是无足轻重的观点,也许是一种来自实用的观点;而没有忽视这些效应的第二种看法,无疑是更基本的一种看法,即使在我们面对着用发条开动的时钟有规则地运动时,这也是基本的看法。因为它决不认为开动的机制真是离开了过程的统计学性质。真实的物理学图景包括了这样的可能性:即使是一架正常运行的时钟,通过消耗环境中的热能,会立刻使它的运动全部逆转过去,以及向后倒退地工作,重新上紧自己的发条。这种事件的可能性,同没有发动装置的时钟的“布朗运动大发作”相比,正好是“半斤八两”。
  
  68. 钟表装置毕竟是统计学的
  
  现在我们来作一番回顾。我们已经分析过的“简单”例子是代表了许多其他的例子--事实上,是代表了所有这些逃脱了分子统计学的无所不包的原理的例子。由真正的物理学的物质(不是想象中的东西)构成的钟表装置,并不是真正的“钟表装置”。机遇的因素可能是或多或少地减少了,时钟突然之间全然走错了的可能性也许是极小的,不过,它们总还是保留在背地下。即使在天体运行中,摩擦和热力的不可逆影响也不是没有的。于是,由于潮汐的摩擦,地球的旋转逐渐地减慢,随之而来的是月球逐渐地远离地球,如果地球是一个坚硬无比的旋转着的球体,就不会发生这种情况。
  
  事实上,“物理学的钟表装置”仍是清楚地显示了十分突出的“有序来自有序”的特点——物理学家正是在有机体遇到这种特点时,使他们深受鼓舞的。这两者看来毕竟还有某些共同之处。可是,共同点是什么,以及究竟是什么样的差别才使得有机体成为新奇的和前所未有的例子,这些还有待于了解。
  
  69. 能斯脱定理
  
  一个物理学系统--原子的如何一种结合体--什么时候才显示出“动力学的定律”(在普朗克的意义上说)或“钟表装置的特点”呢?量子论对这个问题有一个简短的回答,就是说,在绝对零度时。当接近零度时,分子的无序对物理学事件不再有什么意义了。顺便说一下,这个事实不是通过理论而发现的,而是在广泛的温度范围内仔细地研究了化学反应,再把结果外推到零度--绝对零度实际上是达不到的--而发现的。这是沃尔塞?能斯脱的著名的“热定理”,毫不夸张地说,这个定理有时授予“热力学第三定律”的光荣称号(第一定律是能量原理,第二定律是熵的原理)。
  
  量子论为能斯脱的经验定律提供了理性的“基础”,也使我们能够估计出,一个系统为了表现出一种近似于“动力学”的行为必须密切地接近绝对零度到什么程度。在任何一种具体的情况下,多少温度是实际上等于绝对零度呢?
  
  你千万别认为这个温度一定是极低的低温。其实,就是在室温下,熵在许多化学反应中都是起着极其微不足道的作用,能斯脱的发现就是由这种事实引起的(让我再说一遍,熵是分子无序的直接量度,即它的对数)。
  
  70. 摆钟实际上是在零度
  
  对于一台摆钟又能说些什么呢?对于一台摆钟来说,室温实际上就等于零度。这就是它为什么是“动力学地”工作的理由。你如果把它冷却,它还是一样地继续进行工作(假如你已经洗清了所有的油渍)!可是,你如果把它加热,加热到室温之上,它就不再继续工作了,因为它最后将要熔化了。
  
  71. 钟表装置与有机体之间的关系
  
  看上去这似乎是无关紧要的,不过,我认为它确实是击中了要害。钟表装置是能够“动力学地”工作的,因为它是固体构成的,这些固体靠伦敦-海特勒力而保持着一定的形状,在常温下这种力足以避免热运动的无序趋向。
  
  我认为现在有必要再讲几句话,来揭示钟表装置同有机体之间的相似点,简单而又唯一的相似点就是后者也是依靠一种固体--构成遗传物质的非周期性具体--而大大地摆脱了热运动的无序。可是,请不要指责我把染色体纤维称为“有机的机器的齿轮”--这个比喻,至少不是没有深奥的物理学理论作为依据的。
  
  最明显的特点是:第一,齿轮在一个多细胞有机体里奇妙的分布,这点我在第64节中曾作了诗一般的描述;其次,这种单个的齿轮不是粗糙的人工制品,而是沿着上帝的量子力学的路线完成的最精美的杰作。 
首页 上一页 共2页
返回书籍页