必读网 - 人生必读的书

TXT下载此书 | 书籍信息


(双击鼠标开启屏幕滚动,鼠标上下控制速度) 返回首页
选择背景色:
浏览字体:[ ]  
字体颜色: 双击鼠标滚屏: (1最慢,10最快)

生命问题

_2 路德维希.冯.贝塔朗菲(奥)
“因此,当躯体内组分处于流动的状态时,躯体自身似乎是持存的。但是,个体也表现为始于受精、终于死亡的一系列事件。……处于缓慢的流动中的,相对持存的和准静止的东西,乃是一种有机形态,而较快的事件流则是维持这种形态的功能。……如果我从较低层次考察到较高层次,那么,这些形态是显而易见的。较高层次的系统作为形态发生作用,所有从属的事件都被整合进这种形态之中。另一方面,如果从较高层次往下看各个较低层次,那么不同层次的形态依次分解成过程,这些过程的速度随着系统范围的缩小而加快。”(1938 年)。
近年来,关于有机体作为一种处于稳态的系统的概念,尤其随着示踪方法的进步而开始为人们所熟悉。示踪方法表明,有机体中的组成物质以迄今未知的速度进行着分解和合成的过程。比如,试比较一下以上陈述与下述示踪工作的梗概:
“活细胞动态的发现和描述,是生物学和医学领域创造的同位素技术的主要贡献。……蛋白质分解酶和水解酶在以极快的速率分解蛋白质、碳水化合物和类脂化合物的过程中一直起着作用。细胞结构的爱蚀,由一组合成反应连续给予补偿,以重建降解的结构。成体的细胞保持自身于稳态中,不是因为没有降解的反应,而是因为合成反应和降解反应以相同的速率进行着。最后结果好像是正常状态的反应消失了;接近平衡是死亡的征兆。”(里顿伯格[Rittenberg],1948年)
因此,我们不能把有机结构看作是静态的,而必须把它看作是动态的。这种观点首先适用于原生质和细胞结构(pp.32ff),由于这个原因,在这微小尺寸的层次上,这种观点尤其给人以深刻的印象。当我们把诸如细胞核彷锤体、高尔基体等形成物,制备成固定和染色的显微镜载玻片时,它们在我们眼前显现出结构。可是,如果我们考察它们的按时变化,它们便表现为化学和胶体层次上的过程,在这过程中,准静态只持续片刻,不久就发生变化或消失。
这种观点原则上也适用于作为一个整体的有机体的宏观结构。在有机体中,最终存留下来的也不是持存的结构,而是稳定过程的规律。
有机体作为事件之流的体现的这一概念具有意义深远的结果。它导致了“ 动态形态学 ”(冯·贝塔朗菲),该学科的任务是从受定量规律支配的力的作用中推导出有机形态。用这种方法,将新陈代谢、生长和形态发生这几个领域整合起来。
生长无疑是生物学的主要问题之一。确实,通常人们把生长看作是生命的最大奥秘。可是,为什么有机体会增大?为什么当有机体“长大”后,这种增大会减慢,以至最后停止下来?对这些问题,生理学至今尚未作出解答。但是,把有机体看作开放系统,形成一种精确的 有机体生长理论 ,可以对生长这种基本的生物现象作出解释并给出定量的定律(冯·贝塔朗菲,1934-1948年,cf.Vol.Ⅱ)。一般可以说:有机体在合成代谢超过分解代谢时就生长;当这两种过程保持平衡时,有机体生长活动就变得静止。经验表明,组成物质的分解代谢大体上与躯体大小成比例的。可是,就高等动物而论,组成物质的合成代谢,好像依赖于能量代谢——它产生了构成有机组分所必需的能量。在最主要的例子(比如脊椎动物)中,能量代谢是与表面积成比例的。从这个前提能够推导出生长定律,这个定律有可能对不同类型动物生长曲线进行计算并对其独特性作出说明。在某些适当的例子中,这些生长定律是相当有效的,其精确度可以与物理定律相比。这已在从细菌和组织培养到鱼类、哺乳动物等各种各样的例子中得到了证明。在这个处理方式中,生长便能与总的代谢联系起来,并且能从总的代谢中推导出来。
这个理论阐明了许多问题,这里只列举其中最重要的一些问题: 绝对的身体大小和对于动物按时生长的解释和计算;细胞体积恒定性原理,哺乳动物的周期性生长;再生生长的过程;通过吸收表面的测量 而对该理论的证实;由这个理论推导出关于呼吸量取决于躯体大小并与相应的 生长类型 有关的 动物不同代谢类型的陈述 ;就 性别差异 而言,代谢强度与躯体大小之间的相互关系;根据动物生长曲线 对组成物质分解代谢强度的计算 ,这些计算值在独立的生理实验中得到了证实;有机体生长理论在生态问题上的应用,例如, 生长对于温度的依赖性 (伯格曼[Bergmann]规则),以及该理论在 地理性变异 问题上的应用; 人类生长曲线的独特性 及其对于人的身体和精神发展的意义。
动态形态学的另一类问题,涉及到发育和进化过程中形态发生的变化。如果我们比较一下有机形态就可以看出,它们的形态不同,主要取决于比例的差别,这些差别又取决于生长速率的不同,因为某些部分比整个躯体生长得快,另一些部分比整个躯体生长得慢。这首先适用于个体的发育。例如,新生儿的头部大约是身体长度的四分之一;但成人的头部只是身体长度的八分之一。因此,头比整个身体长得慢。相反地,腿比身体的其他部分长得快,因为新生儿的腿比成人的腿短得多。因此,躯体形态主要是由各部分相对生长速率决定的。在许多例子中,这种相对生长,生长速率的协调,遵循一个简单的定量定律即由赫克斯利(Huxley)(1924年)提出的异速生长定律。相似的考虑也适用于进化问题。相关物种之间的区别,在很大程度上取决于躯体比例的不同,因而也取决于遵循异速生长定律的生长速率的协调。
我们对若干有关问题作了研究,将异速生长原理应用于一部分新领域。我们可以举出其中某些问题: 躯体大小和新陈代谢之间的关系 ,以及有关基于这种关系的代谢类型的陈述; 节律过程 ,诸如脉搏和呼吸的频率,对于躯体大小的 依赖性 ,及其定量定律; 代谢梯度与 生 长梯度的关系 ;对 蔡尔德关于生理梯度理论的批判性考察 ;关于躯体作为一个整体的 绝对生长 与躯体各部分的 相对生长 的综合理论;关于 药效作用 的定量 定律 ;关于相对生长 对人的体质类型 的意义的思考。有关进化的基本问题提供了理论上的新观点,例如进化的定向性或 直向演化 ;物种形成过程中的 协同适应性变化,内分泌因素在进化中的重要意义 ,等等。
形态学的另一个基本原理也在这种关系中找到了它的生理学基础。18世纪的传统形态学提出了“器官平衡原理”,歌德表述为“预算定律”(“budget law”),乔弗鲁瓦·圣伊莱尔(Geoffroy St.Hilaire)称为“平衡定律”(Loi de balancement”)。它表明,在动物躯体内各个器官大小之间存在着特有的恒定关系,我们还可以补充说,它们的化合物之间也存在着这样的关系。按照异速生长定律,生长速率的协调性,最终以有机体内各个部分之间的竞争为基础。每个器官能够从整个有机体获得的营养物质中吸收一份独特的营养。因此,每个器官都以一定的速率生长。异速生长体现了趋于一定稳态的分配过程,这个事实为平衡定律提供了生理学基础。
有机形态似乎是很难作定量分析的问题。可是,现代研究表明,有机形态是受定量定律支配的,而这种定量定律已被人们逐渐地揭示出来。我们可以把生物学中的动态概念与物理学中的动态概念加以比较。正像现代物理学中并不存在刚性和惰性粒子意义上的物质,而原子宁可说是波动力学的节点,生物学中也不存在作为生命过程载体的刚性有机形态;相反地,有机形态乃是一种过程之流,以表现上持存的形态显现出来。
在感觉和兴奋的生理学领域中,也发现了能够得出定量定律的相应理论。因此,由皮特(Putter,1920年)和黑希特(Hecht,1931年)发展起来的有关感觉、尤其是视觉的定量理论,是以相似于以上详述的原理为基础的。在眼睛中,如同在照相底片中一样,存在着光敏感物质,它受到曝光就会分解。在对明亮敏感的视网膜杆中,光敏感物质是视紫质。邦森-罗斯科(Bunsen-Roscoe)定律适用于光化学反应。如摄影者熟知的,这个定律表明,为了获得一定的效果,例如,照相感光板的变黑,光线强度越弱,则曝光时间必须越长;或者,用数学术语说,光强与时间的乘积是常量。可是眼睛与照相感光板不同,它具有阈值,低于此阈值,光就不起作用。这是因为,光低于阈值会阻碍视紫质分解为最终引起神经兴奋的物质,这里存在着从视紫质的分解产物中再生出视紫质的第二步反应,从而消除了兴奋物质。从已指明的原理出发,光感觉的定律,阈值的存在,对亮暗的适应,光线强度辨别,韦伯-费克纳(Weber-Fechner)定律及其限度,等等,都可以定量地推导出来。
有机体所特有的能量状态也是以可称为触发器作用的兴奋现象的特性为基础的。正像小小火星落在一小桶甘油炸药中释放出巨大能量那样,在对刺激的反应中,例如在肌肉的收缩中,释放出的能量,与刺激的能量——电能、机械能、化学能等等,并不存在着定量关系。正如我们前面已说过的(p.119),有机体不是原先静止的机器,机器需靠刺激才能运转;而是刺激引起有机体释放出它在静止状态时贮存着的能量。如果有机体是机器式的,必需突然地被开动,那么,它就不能发挥自己的功能。有机体按照非常经济的原理进行工作,可以与蓄电池的原理相比,它在松闲时期,比如在晚上,积聚大量能量,这些能量可以在需要时释放出来。在生理学上,这表现为这样的情况:在神经或肌肉活动中,大部分新陈代谢过程并不是在活动阶段发生的,而是在该系统“充电”的恢复期间发生的;消耗能量正在于此。这导致了刺激-反应活动与无需外界刺激的节律-自动活动(pp.119f.)两者的统一概念。节律-自动活动的基本原理,也就是放电和充电的原理。节律-自动活动遵循张弛振荡原理或kippschwingungen原理(贝特)。例如,这个原理在广告灯上的应用,电容器是逐渐充电的,达到临界电位时,它通过霓虹灯管放电,随后又重新充电,再放电……,所以,广告灯以节律间隔的方式闪光。相似地,有节律地活动的器官在新陈代谢过程中积聚能量,在达到一定程度时突然释放能量。因此,张弛振荡原理也在自动活动和对外界刺激的反应活动中起作用。由于这个原因,在典型的反应器官和神经中枢之间并没有明显的界线,而完全处于中间状态,像隔离的肌肉或反射中枢,只有受外界刺激后才开始活动;而有节律地活动的器官和神经中枢,像心脏或呼吸中枢,是在恒常的外界条件下进行活动的。因此,兴奋的基本现象(诸如触发器作用),初始阶段和恢复阶段新陈代谢强度的比率,节律的自动性,等等,都是同一原理的必然结果,该原理即是:有机系统原本不是靠外界的影响、刺激而开始运作的系统,而是内在能动的系统。
虽然,我们的这些探讨是初步的,但我们可以说,新陈代谢、形态发生、应激性的大领域,在开放系统和稳态的指导原理之下,开始融合成一个统一的理论领域。这种影响是明显的。
如果我们考察物理学,那么物理学的最重要的成就之一是实在的“同质化”(“homogenization”),也就是将不同的现象归约为统一的定律。必须认识到质上非常不同的现象,如行星的运行轨道,石头的下落,钟摆的摆动,潮汐的涨落,都是受一个定律即万有引力定律支配的。这对于17世纪的自然主义者来说,无疑会感到震惊。只是到后来这种震惊才得以消除,并且以前分离的诸领域得到统一,例如力学与热学统一于分子运动论,光学和电学统一于电磁理论,这被人们看作是最重大的胜利。现代生物学领域也出现了相似的趋势。人们可以从同样的观点来思考非常复杂的现象。在某些分支学科中,已经能够用数学术语表达它们的定律;在另一些分支学科中,我们认识到一些目前只能以定性的方式加以表述、但符合相同概念图式的定律。许多领域可以服从于相同的统一概念,这些领域是非常多样的,比如某些物理-化学现象,在经典理论范围内似乎是悖理的,但用新概念,则是可以解释的,这些新概念有生物动能学、新陈代谢、生长和动态形态学、进化规律、感觉器官和神经系统的活动、心理学的格式塔知觉,等等。
而且,新理论打开了通往生命世界基本问题的道路,其中也包括被认为是通向生命的最深奥秘之路。
我们再一次回到杜里舒认为是活力论证据的实验。我们可以用等终局性概念来说明他的海胆实验的奇怪结果。Aequus,是相同的意思,finis,是终局的意思。等终局事件是指从不同的起点出发,通过不同的途径,达到相同的目标的事件。除了某些例外的情况,我们没有在物理过程中发现等终局性。在物理过程中,初始条件的变化通常导致最后结果的变化:一架受损机器以不同于未受损机器的方式运转;格管方位的变化,所用的火药量的变化,引起射弹命中的变化,等等。与此相对照,等终局性是生命过程的重要特征。例如,在杜里舒实验中,初始条件可以是不同的;例如,一个完整的胚芽,半个胚芽,两个胚芽的融合产物;然而,结果是相同的,即都发育成正常的幼体。在这个生长的事例中,等终局性可以定量地加以表述。同一物种可以从初始不同的大小,诸如出生时不同的重量,或在(避免受到持久的损害时)受到暂时的扰动之后,或在因饮食量仅够维持生存或饮食中缺乏维生素而引起的停止生长之后,最后可达到该物种特有的相同的大小。那么,等终局性是活力论的证据吗?回答:否。
对开放系统行为的分析(冯·贝塔朗菲,1940年,1942年,1950年)表明封闭系统不能表现出等终局性行为。一般说来,这是我们没有在无机系统中发现这种等终局性行为的原因。相反地,开放系统处于与环境进行物质交换的过程中,就其达到稳态而言,表明后来的状态不依赖于初始条件,换言之,它们是等终局的。就开放系统达到稳态而言,等终局性是该系统内发生的过程的必然结果。因为,在该系统内有组分物质连续的流入和流出、合成和分解,最终达到的稳态不依赖于初始条件,而只依赖于流入和流出、合成与分解之间的比率。换言之,最终状态不取决于初始条件,而取决于系统控制刚才提到的那种比率的诸条件。例如,按照这种理论,可以将动物生长解释为有机体内连续发生的分解代谢过程与合成代谢过程对抗的结果。组成物质的分解代谢依赖于躯体的体积;可是,合成代谢,至少就最重要类型的动物生长而言,是依赖于表面积的。如果一个躯体只增加其大小而不改变其形状,那么,它的表面积-体积比率会因表面积的减少而改变。如果拿卷饼与面包作比较,就很容易理解这个意思:卷饼具有的表皮即表面积比表皮内充满体积的柔软部分多得多。有机体生长也是如此。只要有机体是较小的,表面积依赖的合成代谢超过分解代谢,由此有机体才能生长。然而,最后只有当合成物质取代分解代谢中降解的物质时,才达到了平衡。当有机体进入稳态时,就生长起来。可是,这种稳态并不依赖于有机体最初的大小,而是依赖于特定物种特有的组成物质分解代谢与合成代谢之间的比率。因而,有机体可以从最初不同的大小或从受扰动后的状态发展到最终同样的大小。我们从这种可以定量处理和计算的例子,能够得出一个重要的结论:方向性是生命过程的特征,以致于人们认为它是生命的真正本质,它只能以活力论的术语来解释,但这种方向性是活机体特有的系统状态即开放系统的必然结果。
在本章内,我们只是以粗略的梗概和非技术性语言提示开放系统论及其在生物学中应用所展现的远景。在后一卷中,将用数学语言作更加系统的描述。然而,以上所说的足以表明开放系统理论及其在活机体中的应用,可以导出新的基本原理。这在两种意义上是真实的。
第一,开放系统理论能够对重要的生命现象,诸如新陈代谢、生长、形态发生、兴奋和感官知觉作精确的定律陈述。第二,能够从开放系统理论推导出最深刻地将活机体内的过程与无生命界中的过程区分开来的一般特征。
我们用开放系统理论对这些生命现象作出了戏剧性的探讨。因为这些现象貌似违反物理定律,一直被人们看作“活力论的证据”。等终局性——杜里舒活力论的“第一证据”,表现为开放系统过程的结果。相似地,新陈代谢的自我调节——细胞通过无数反应的相互作用而达到的自我保存和不断更新——一直被人们认为只能用假定的隐得来希因素加以解释(科特耶[Kottie])。这些现象用开放系统原理来解释,虽然还不能在细节上说明白,但也大体上开始变得可理解。按照经典的摘定律,事件的自然趋势是指向以极大无序性表征的混沌状态,换言之,是指向所有过程终于都停止的热动平衡。可是,我们在活机体中发现保持有序和避免平衡的现象。因此,正如薛定谔所说的,从经典理论的观点来看,只有这种可能性,即有机体是这样一个系统,它不受用统计学方法从无序原理中得出的热力学定律的支配,而受符合“有序来自有序”原理的力学定律的支配。可是,薛定谔清楚地感到,那种把有机体看作“机械装置”或“时钟机构”的概念是不适当的,事实上,有机调节现象也驳斥了这种概念。因此,薛定谔仍然只能求助于“监督原子运动”的自我。同一论证的另一种表述是以渐进变化现象为依据的:按照熵定律,事件的过程是趋向于有序程度的减低;可是,在生 物界中好像发生向更高程度的有序转变的现象;沃尔特雷克提出用“非空间的内在生命”的“引导性冲动”的概念解释这种现象。与此相对照,开放系统热力学创立了全新的观点。开放系统不会趋向极大的熵和无序,不会达到所有过程都停止的热动平衡。相反地,在该系统中会出现自发的有序,甚至会出现有序度的增长。还有另一点,就是协变复制,即基因和染色体能够分裂,却又能“保持整体”。这实际上就是杜里舒称为的“活力论的第二证据”。或许这种现象也是有机体系统的稳态产生的结果,最后,杜里舒“活力论的第三证据”是以“行动”及其“反应的历史基础”为依据的。这个问题也可以按照与神经系统功能的动态概念( pp.118,121)相关的记忆系统论(p.191)加以解释。
所以,我们这样的假定将不会有什么错:我们以这些原理接近了基本的生物学问题的真正根基。     
第五章
生命和知识
世事与人生浮沉漂流,
绵延的思维使之永驻。
——歌德:《浮士德》
1.整体及其部分
断言“整体大于其部分之总和”即整体与其组成部分相比较,它具有“新”的性质和活动方式,以及事物的高层次可否“还原”为低层次的问题,是每个“综合整体的”理论或“统一整体的概念”的实质。显然,这里所包括的两个陈述就其本身而言是正确的,但它们是对立的。
一方面,等级秩序中的每一个系统,从基本的物理单位到原子、分子、细胞和有机体,都显示出新的性质和活动方式,它们不能仅仅根据从属系统的性质和活动方式的累加来理解。例如,当金属钠和氯气化合形成氯化钠时,后者的性质就不同于这两个组分元素的性质;相似地,活细胞的性质完全不同于组分蛋白质的性质,等等。
另一方面,根据低层次解释高层次,这正是物理学的任务。因此,化合价是由原子而产生的,随后,化合物是由不同的原子的结合而产生的,同样地,不同的化学性质是由原子外层电子壳的有效电子数产生的。相似地,分子内部原子的空间排列解释了由化合物形成的晶体的构型。化学结构式在很大程度上解释了被认为是“非累加”的典型事物的真正性质,例如,碳氢化合物特有的颜色(化合物由本身无颜色的元素组成),它们的味道、药效作用,等等。由此而出现了被设想的高层次相对于低层次的“非累加性”真正意味着什么的问题,以及在多大程度上高层次可以根据低层次得以解释的问题。
对这些问题的回答是简单的。高层次的性质和活动方式是不能根据 孤立所得 的它们组分的性质和活动方式的累加作出解释的。可是,如果我们知道这些组分的 集合 和 各个组分之间存在的关系 ,那么高层次是可以从这些组分中推导出来的。
当然,纯粹的累加,比如说许多C、H、O和N原子的累加,并 不能提供有关化合物分子的足够知识。这是显而易见的,例如,同分异构现象,当化合物由相同的原子以不同的排列方式构成时,会产生不同的性质。相反地,如果我们知道了结构式,那么分子的性质是可以从它的部分即组成的原子得到理解的。这同样适用于每个“整体”。即使我们把电导体各个部分中的电荷加合起来,也并不能发现整个导体中的电荷分布,因为电荷分布依赖于整个系统的构型。如果我们已知各部分的参量和整个系统的边界条件,那么,电荷在整个系统中的分布状况就可以“从各部分”中推导出来。
这些陈述是浅显的。为了认识某个给定的系统,不仅必须了解它的各个“部分”,而且必须了解各个部分之间的“关系”,每个系统表现为一个“整体”或格式塔(p.192),这些自明之理,只是因为机械论假设在生物学中的滥用而成为问题和争论的触发点:机械论只考虑“部分”,忽略了“各部分之间的关系”(pp 10ff.)。
然而,这里仍有一个问题。这个问题最好用一些例子来说明。理想单原子气体的原子,起初被机械的热理论看作服从力学定律的物质微粒。后来,在卢瑟福(Rutherford)的模型中,原子仿佛是一个行星系统,在这个系统中,带着正电荷的原子核像太阳居于中央,负电子像行星围绕原子核旋转,这个系统受电力控制而存在,符合质子数等于电子数的定律。玻尔(Bohr)以后的原子模型表明,解释放射现象还需要引进量子条件。最后,当我们转到原子核时,电力就不够了。作为自由粒子的质子带有正电荷。然而,原子核由质子和中子结合而构成,虽然质子在原子核中由于它们带有(同种)电荷而相互排斥。因此,如果一个质子处于原子核中,会受到核力的作用,这种核力被解释为交换力,而为了要理解原子核,就必须考虑这些核力。另一个例子是:经典化学赋予每个原子以一个确定数目的化学价,用图示符号表示为H-,-O-, ,等等。当一个原子与另一个原子化合时,化合价就达到饱和。实际上,这些基本的化合伙在传统意义上对有关化学的化合物已经足够了。然而,它们还不足以解释诸如结晶、大分子化合物、内聚性,等等;更确切地说,原子确实显示出另外一些力,人们称之为第二类化合价、晶格力或范德瓦耳斯力。随后,人们用现代电子理论和量子理论解释这些力。就所有这些事例而言,要把新的现象包括到物理学理论中去,就必须对原有的物理学图像进行修改和精炼,正是这些工作构成了物理学的进展。
物理学和生物学中所谓机械论概念的基本假定是,所有现象都可以用一套预先确立的定律加以解释。这是拉普拉斯(Laplace)精神的理想,按照这种理想,所有事件都可以还原为“原子的运动”,即还原为力学定律,而定律又被看作是终极的定律;因此,科学的演进只是在于将这些基本的定律应用到所有现象领域中去。但是,事实上物理学的进展却向人们讲述了不同于上述观念的、更加激动人心的故事。电动力学决不能还原为力学,量子物理学也决不能还原为经典物理学。要概括诸现象的新领域,尤其是组织化现象的新领域,就得运用综合的方法,这种方法能使原先分离的领域融合为一个整合的领域。但是,如果仅仅应用本段开始所说的原理和简单地从低层次推导出高层次,往往是做不到这点的。相反地,只有当这些原理和推导方式包括进普遍化的理论中时,它们才会获得新的面貌。
以上所说的可以在实在论或认识论意义上加以解释。按照实在论的解释,可以说,在每个系统中,更高层次的力是 潜在地 存在的,可是只有当该系统变成更高层次结构的组成部分时,例如,如果质子成为原子核的部分,如果共价键链靠“经典”的化合价结合在一起参入多糖类胶粒,如果一个蛋白质分子成为具有自我复制功能的基本生物单位的部分,等等,这种潜在的力才会显示出来。
但是,这种实在论的或形而上学的解释弄错了科学的含义。“力”并不是某些物理结构中固有的形而上学的属性,物理学引进“力”的概念是出于说明和计算现象的需要。“力”的含义具有直观模型的性质。真正重要的事情,是形式关系,是自然定律的系统。然而,自然定律系统是趋向统一的,即从尽可能最少的基本假设出发推导出许多特殊的定律。为了达到这个目标,必须在科学演进的历程中不断地改变和重新形成基本的假定。
当我们思考有关物理学定律与生物学定律之间关系的许多有争论的问题时,必须记住以上这些论述。
2.生物学定律和物理学定律
因机械论这个术语可作多种解释,生物学中有关“机械论”的讨论,受到很大妨碍。本作者例举了(1932年)七种不同含意的机械论,可能这些例举并不是详尽无遗的。“机械论”这个术语的明确含意是“非活力论”,即排斥那些不能作科学研究而只能通过拟人化的移情方式加以想象的因素。在这个意义上,“机械论”与自然科学是同义的,因而科学的生物学必需是“机械论的”。可是,就比较狭窄的定义而言,就有许多分歧的意见。某些“机械论者”,诸如比宁(Bunning)(1932年)同意把特殊的生物学定律看作一种过程的事件。其他的机械论者(格罗斯[Gross」,1930年)认为机械论本质上排斥特殊的生物学定律,或者以同样的口气断言:承认特殊的生物学定律,则是与机械论相对立的“活力论”的观点(文茨尔「Wenzl],1937年)。
显然,这里有三种不同的可能性和问题需要加以区分。它们是:(1)生物学是否只是物理学和化学中已知定律的应用领域;(2)如果不是这样的话,生物学定律是否可以最终还原为物理学定律和从物理学定律中推导出来;(3)生物学定律是否具有像物理学定律一样的逻辑结构。
生物学,就其是一门 描述性 科学而言,与物理学的明显差别是自主性问题,这种差别总是存在的,因为生物学的研究对象有其独特性。分类学、解剖学、形态学、胚胎学、生物地理学、古生物学、生理解剖学、生态学、系统发育,不会成为物理学的分枝,即使在遥远的将来也是如此。这不是因为生物学定律是否反映自主性的问题——这个问题与这些领域无关——而是出于这样一个简单的理由:生命世界中的形态和现象的数量之多是非生命世界中的形态和现象无可比较的。例如,描述性的矿物学已成为物理学和化学的附属学科,因为几乎所有的矿物学问题可以由矿物的化学(矿物化学)的、矿物的形态学(结晶学)的和矿物的物理学(晶体物理学)的性质得到说明,而纯粹的描述,例如整理各种不同的玛瑙或长石,已逐渐淡化。但是,区分恶性疟疾蚊子与无害的蚊子,区分蛙的与人的血液循环系统,蜥蜴类动物的系统发育——这样的事只能对之描述。康德(Kant)梦想未来生物学领域中出现的牛顿,也许有一个公式,运用这个公式,各种蝴蝶双翼的图案就可以通过遗传学分析和发育分析的方法,从一个基本的模型中推导出来。但即使如此,他也不愿去描绘几万种蝴蝶双翼带有细小花点的图案,因为要做这种工作,他就必须至少拥有与几万种蝴蝶同等数量的助手,这样做毕竟是不值得的。甚至,这样一位未来的动物学家会默认像在今天分类学文献中发现的以动植物俗名语言所下的定义。必须强调,生物学中这种非物理程序是无论如何不限于词的狭义的单调描述的。实际上,确定一系列生物类型(比如脊椎动物颅骨类型)的形态学比较,详尽揭示脊髓中的通路和反射的解剖生理学研究,对人的系统发育的研究,以及大量的类似问题,都是以特定的生物概念,诸如“类型”、“器官”、“系统发育系列”等等概念为基础的;它们包含了一个有序系统,我们把这个有序系统带进扑朔迷离、多种多样的现象世界,正像理论物理家用数学计算处理多种多样的物理现象那样。
正因为我们提倡精确的、理论的和定量的生物学,我们不得不指出在“精确”科学中表述为“定律”的东西,只代表了实在的一小部分。甚至最伟大的物理学家当他的帽子被疾风吹跑在街上时,他会跟在后面追赶,这时,他不关心热的理论,也不能计算变化无常的风的旋涡,虽然他确信旋风是服从分子运动论的。他理学家和气象学家并不怀疑地壳和大气现象的形成是以物理学定律为基础的,而肯定不是由隐得来希幽灵造成的。然而,这些领域中的无数事物,是不能一古脑儿挤压进一个公式的,而只能加以描述,这里单凭经验的方法必定代替物理学的演绎法。像数学生物学家那样,我们尽最大努力使有机形态服从于精确的定律。比如说,我们感到极为高兴的是,发现了系统发育中脊椎动物颅骨的变化遵循异速生长定律(pp.99f,138)。但是,正因为我们知道的太充分了,以致于只有一小部分现象才可能用“精确”的方法理解。两个颅骨不仅可以根据测量和计算所得的它们大略的比例不同而加以区分,而且可以根据它们大量的特征加以区分,这些特征只能用口头语言进行描述,甚或只能被形态学家受过训练的眼光注意到,但他几乎不能用词表达。
从这个意义上说,生物学决不会“同化为”物理学,它显然处于与物理学相对的“自主性科学”的地位。这种看法超出了“生物学机械论”的问题,而且完全与这个问题的任何结论无关。生物学机械论问题只与有序的一般特征有关,对这些有序的一般特征,我们可以用“定律”的形式作出陈述。
生物学负有确立生命界所有层次的系统定律或组织定律的任务。这些定律似乎在两个方面超出了无生命界的定律:
1.有机界存在着比无机界 更高的有序和组织层次 。就大分子有机物质的构型而言,甚至就诸如病毒和基因那样的基本生物单位的领域而言,我们提出了远远超出无机化合物的结构定律的问题。
2.生命过程如此复杂,以致于我们运用 与作为一个整体的有机系统有关的定律 时,不能考虑个别的物理-化学反应,而必须使用某个生物学序列的单位和参数。例如,如果我们要研究动物完整的新陈代谢,就不能顾及中间代谢过程中数量惊人和极为复杂的反应步骤;相反地,我们应当计算平衡值,确定所有这些通过氧的消耗、二氧化碳的产生或热量的产生而进行反应的全部产物。这是临床上确定基本代谢惯用的诊断方法。当我们想要确立新陈代谢或生长的定律时,这种方法也同样适用;这里,我们也必须使用表示无数物理-化学过程的大量结果的常数。用这种方法,我们有可能阐明若干精确的并可在一个理论中作演绎的总定律(p137)。相似地,遗传学不计算物理过程,而计算生物单位,例如基因,载有基因的染色体,植物和动物的群体,在这些群体中可以观察到易于辨认的性状在连续世代中的分布,等等。以这种方式,遗传学形成了一个具有令人赞叹的精巧和严格的统计定律系统。而且,群体动力学理论,就其生态学方面(福尔特拉、德安康纳及其他人)和其遗传学方面(哈迪[Hardy]、赖特等)而言,是数量生物学中最先进的领域之一。当然,这个理论个能以物理-化学单位的术语加以陈述,而只能以生物个体的术语作出陈述。这类定律很大程度上已在生物学的若干分支学科中确立起来了,并且表明统计定律的未来发展,将使生物学成为一门精确科学。这些定律不是“物理的”,因为它们涉及的是那些只存在于生物学领域内的单位有关;但在充分发展的生物学领域中,由这些统计定律形成的理论系统具有与物理学的任何领域相同的逻辑结构。
定量定律的效果是明显的。理解定量定律对于控制自然确实具有最重要的意义。正是由于人们确立了精确的定律并能预测未来事件,现代技术才有可能取得发展,人们才有可能控制非生命界。相似地,生物学定律的确立将能使我们越来越多地控制生命界。
人们通常断言,数量生物学定律的陈述包含着把生物学还原为物理学和化学。这种看法几乎不值一驳,因为数学是能普遍应用的工具,因而它能应用于任何领域,比如可应用于社会学或心理学,也可应用于物理学或化学。
对生物系统作分析处理和综合处理之间存在着一种互补性。或者我们能够从有机体中挑选出个别过程,从物理-化学方面作分析,这样我们将会忽略极其复杂的整体;或者我们能够陈述作为一个整体的生物系统的若干总定律。但这样做,我们就不得不放弃从物理-化学上确定个别过程。
第一程序是生物化学、生物物理学和生理学所通常使用的方法。然而,经验表明,这种研究方法并不能揭示“有生命”的基本特征。生物学文献不断重唱这样一种老调:尽管人们对有机体中有关的物理-化学因素作了广泛的分析研究,但并没有把握生物学特有的问题,这些问题有待于“将来研究”。例如,对渗透性的物理-比学因素的研究导出了这样的结论:这些因素并不能充分解释活细胞中物质的输入和输出,除了“物理渗透性”之外,还假设有一种调节的“生理渗透性”(赫口)或细胞的“腺样”活动(科兰德[Col-larder」),;这显然是一种把调节因素加到物理-化学过程中去的半活力论概念。正确的解释可能是一种渗透性的系统理论(冯.贝培朗菲,1932年):在活的、进行新陈代谢的细胞内所发现的物质,有序地和有规则的变换,似乎受存在于作为一个整体的有机体环境中的诸因素的集成所支配。——根据胶体化学对原生质的解样,无法说明原生质为什么是“活的”问题,即为什么它不像无生命的胶体系统那样达到平衡态,而是保持自身于连续的变化、不断的分解、合成和再生的状态之中的问题。——甚至有关细胞和有机体中发生的个别化学反应的最详细的知识,也不能解答刚才提到的有机体新陈代谢的基本问题,即有机体在其组分变化中保存这种过程的自我调节和协调的问题。但是,有机体作为稳态反应系统的理论,可以说明这个问题(cf下卷)。——现代科学研究已揭示了组织者作用和基因依赖物质(gene-dependent substances)的化学性质。可是,发育和遗传问题自然转向反应复合物的另一方面问题,即对这些因素作出反应的底物的组织问题。人们在对实验的单性生殖作了大量研究之后,卵的活化作用这一实际问题,即除了在渗透性、胶体状态。呼吸等中的物理-化学变化之外,各种物理-化学因素在形成新的有机体的令人惊异的过程中实际上怎么起作用的问题,还未解决。这种思考并不怀疑分析研究的必要性,分析研究是从理论上洞察控制生物现象的因素的基础,同样也是具有最大实际效果的领域(诸如酶、激素和维生素、化学疗法等领域)的基础。但是,这些思考确实表明,分析程序需要对于作为一个整体的有机体及其总定律的研究作为一种互补。
于是,我们可以用下述方式解答前面提出的第一个问题(p.151):生物定律不只是物理-化学定律的应用,相反地,我们在生物学中拥有一个特殊定律的领域,这并不意味着在活力意义上的二元论进入生命活动领域。而是表明生物学定律与物理学定律相比,是一种更高层次的定律(172 ff)。第三个层次由社会学领域构成。
现在来谈第二个问题:生物学定律是否能最终“还原”为物理学定律。物理学的演进趋向于更加广泛的统一,虽然还没有完成这种统一,但在原则上使我们期望整个物理世界可能是由少数几种终极元素和基本定律构成的。根据少数的物理常数,例如普朗克量子,质子和电子的质量,光速,等等,再加上有关的基本定律,首先可以推导出原子结构和元素周期系。从这些原子结构和化学元素周期系中又可以推导出多种多样的化合物,晶体,刚体等等,直到行星系和星系。几乎毋庸置疑,物理学定律和生物学定律两大领域的融合最终是会实现的。因为,从科学的逻辑观点看,以前分离的领域的综合是科学发展的总趋势。另一方面,从经验的观点看,业显微形态学、病毒等领域,在无生命界和生命界之间形成了连结的环节。可是,这种基本假设并不排除首先确立生物层次上的定律的必要性。同时还有可能,甚至在某种程度上已得到证明:生物学问题和生物学领域的确切内涵,将导致物理学概念和定律系统的扩展。回想一下开放系统理论中的热力学概括吧,它好像与迄今被人们认为是基本的物理世界的原理(诸如趋向于最大无序的原理)相矛盾的。由于热力学似乎是经典物理学中的达到完美的一个领域,所以这一点就更加引人注意。因此,唯有科学自身的演进将表明,以何种方式能够达到综合。
数字和量度支配着数学物理学领域,指读数则是数学物理学的最终基础。在生物学中,定量定律的陈述也是一项重要的工作,而且我们看到,甚至可以在有机形态这样的诸领域中发现这些定量定律。然而,看来有一系列特殊的生物学问题,对之进行处理的数学工具还有待于人们创造。许多最基本的生物学问题不是量的问题,而是“模式”、“位置”、“形状”的问题。
例如,在有机体的等级秩序中(pp.37ff.),重要的不是量的问题,而是低层次与高层次的关系、集中化等等问题。在形态发生活动中(pp.62f),重要的问题既不是细胞数目,也不是形成物的数量与质量的关系,而是它们相对位置的变化;例如,当器官形成时,原肠胚表面扩展的各个器官部位或“区域”,在以一定的方式开始收缩的过程中,在胚胎中获得一定的位置和形状,等等。我们可以测量形态发生中按一定空间方位发生的变化。就形态发生的变化基于相对生长而言,我们发现它们受简单的异速生长规律(p.138)的支配。这样,系统发育和个体发育的变化,例如马科的颅骨的增大,可以用简单的公式表达。可是,形状的变化当然不是单维的,而是按照多维空间中的许多矢量发生变化的、如果我们运用德阿尔西·汤普森(d’Arcy Thompson)的变形方法,这种变化能再次得以表达。比如说,始祖马的颅骨投影成矩形的笛卡儿坐标系,通过这个坐标系的变形,它可以变形为现代马的颅骨;在这变形过程中,出现的诸中间形态相当于马科进化的系统发言诸阶段。可是,这仅仅是一种描述的方法,它并没有告诉我们有关决定变形的定律。我们想要知道的,并不是有关几个可测矢量的方程,而是一种整合定律,该定律会向我们表明,为什么从始祖马到现代马的转变,相对于其他的、数学上可能是无数的转变而言,是唯一在这进化系列中实际发生的转变。
就我们所能考察的范围而言,这些问题与拓扑学和解析部位(analysis situs)有一定关系;这就是说,它们涉及到流形(mani-
fold)内的关系问题。它们好像是群论的部分问题,因为在方程系统的变换中出现了下变量问题。我们也可以考虑到数理逻辑的发展,正像伍杰将数理逻辑应用于生物概念的定义。最后,一般系统论(pp.199ff)在未来发展中具有重要的地位。这些问题有共同性,但它们的共同性不在于数量的性质,而是涉及到有序与位置的关系。
人们通常把“数学”等同于“关于量的科学”。就数学演进及其在物理学中的应用的一般历程而言,这种看法是正确的。可是,从广义上说,数学包括了所有的有序的演绎系统,而且像刚才指出的,还存在“非定量”数学的某些萌芽阶段。在这个意义上,几位作者(冯·贝塔朗菲,1928年,1930年;伍杰,1929年,1930-1931年;贝文克,1944年),以及其他后继者加尼达姆和沃丁顿(Wadding-ton),已考虑到这种可能性:非定量的或格式塔的数学可能对于生物学理论具有重要的意义。正如贝文克所指出的,这种非定量的或格式塔的数学可能是这样一种数学系统,在这个系统中,正像在极好地适合物理学需要的普通数量数学中那样,并非量的概念,而是形式或有序的概念才是基本的。
物理学的例子暗示,在新领域中,往往必须发展与之相适应的数学,而这种数学通常是新的和前所未闻的,例如,波动力学的矩阵理论就是这样的事例。
“当我们想到,处理物理学中的最基本系统必须要有数学的全新发展,发展要求数学物理学家作出最大的努力,看来仅仅应用常规的物理学和物理化学要想充分处理自然界中最复杂的系统——有机体,那是不可能的。只有通过生物学家、理论物理学家、数学家和逻辑学家的紧密合作,生物学的数学化才能实现”(冯·贝塔朗菲,1932年。)
当然,这是“未来的音乐”,只是想要指出有待于未来几代生物学去完成的任务。总之,科学史证明,科学的进步在很大程度上取决于适当的理论抽象和符号体系的发展、正是解析几何和微积分进展,使经典物理学有可能取得进步。相对论和量子理论是与非欧儿里德几例学、傅立叶(Fourier)分析,矩阵演算等等的发展相联系的。化学是随着化学分子式语言的发明而取得发展的。相似地,遗传学是靠孟德尔巧妙的抽象观念和他创造的符号体系而成为一门精确的学科。另一方面,在像发育生理学那样一些领域中,还缺乏严格的理论,是因为它们还没有发现必要的抽象概念和符号体系。
这样,有可能按以下思路对第二个问题(p.151)作出解答。正像前面说明的(pp.149f),新领域向物理学合并,往往不是通过一定原理的单纯外推而实现的,而是以这样的方式达到的:起初是新开拓的领域的自主发展,通过最后的综合,使原先的领域也拓宽了。化学不是通过牛顿力学应用于原子而发展起来的。最初,创造出大量新的和特殊的构造概念和定律,最后达到统一,在此期间,原子从质点转变成复杂的组织。生物学“机械论”预先假定一系列关于自然界的物理学定律,这些物理学定律只有正确地被应用于生命现象,才能对生命问题作出解释。但是,并不存在这样的定律系列,因而,在物理学与生物学两个领域进行最后的综合之前,我们不能预言物理学的概念系统将需要何种扩展。
对第三个问题(p.151)的解答是明确的。所有科学的任务都是要作出“解释”。通过解释,我们理解到特殊对于一般的从属性,反之,又从一般推寻出特殊。因此,科学的确定形态是假说-演绎系统,即这样一种理论构造:在这个理论构造中,可以通过引进特定的条件,从一般陈述中推导出能够得到经验检验的结论。在一定程度上,使用本国语言就能做到这一点。可是,由于词的歧义性,以及这些词按照句法结合起来并不严格遵循逻辑演绎的规则,因而会给假设-演绎系统的精确性带来一定的限制。因此,只有当具有明确的和固定意义的符号按照同样明确的游戏规则连接起来时,才能达到科学的要求。数学可称得上是这样的系统。在这个意义上,康德关于每一自然学说只有达到像数学那样的程度,才能称得上是真正的科学的看法,是正确的。因为数学正是人们可获得的关于实在的最高理性化形式。正是由于这个原因,现代物理学的数学形式主义,经常受到人们责难,并导致它的构造物的非直观比特征,其实,它既不是任意性的,也不是规避窘境,而是科学进步的必然伴随物。可是,数学理论形式用符号反映实在是否恰当,我们不能先验地告知,而只能由经验来断定。确实,就这方面而言,现代物理学不是没有发生令人惊异的事情。如果牛顿被告知物理学基本定律不采取含有严格因果意义的微分方程形式,而采取矩阵和概率功能的形式,他可能会昏厥的。但是,未来生物学定律系统无论采取什么形式,甚至它包括目前我们只能模糊地猜测的结构定律,它将具备逻辑演绎的特征,具备“数学”的特征,也将具备像物理学一样的形式特征。
3.微观物理学和生物学
世界是受严格的物理学定律支配的,这些物理学定律遵循无情的因果法则;科学的最终目标是将所有现象,包括生命和精神的现象,分解成原子的盲目活动,而不给任何有目的性的东西留下余地:这是构思世界的基础。这种观念在19世纪发展到了顶点,人们称之为“机械论”。它的突出象征是拉普拉斯精神的理想;拉普拉斯设想,只要掌握了所有的物理学定律,就能够从某一瞬间原子的位置和速度,推测出整个宇宙在过去和未来的任何时间中的状态。
新近科学的世界图景发生的根本变化之一,是人们揭示了物理学不能阐明绝对精确的自然定律,而被迫默认统计定律。
这种知识是经由两个阶段而获得的。经典物理学早已发现了热力学第二定律的统计性质,与无序的分子热运动相比,所有有方向性的能量处于不可几的状态。因此,更高的、有方向性的能量转变为无方向性的热运动并建立起热平衡,这是一种向更可几的状态的转变,在这过程中,具有不同动能的分子均匀分布的程度逐渐增加。就这个由波尔兹曼(Boltzmann)提出的第二定律的推论而言,每个分子的活动路线是由力学定律严格决定的,这一点至今仍是无可置疑的。可是,事实上,由于大量分子及其相互作用,我们必须掌握表明大量分子平均活动状态的统计定律。这个定律便是热力学第二定律,它表明尽管分子运动是复杂多样的,但它们的总趋势是朝着热平衡方向的。可是,在非常小的范围内确实出现了对第二定律所要求的或然分布的背离。出了这个原因,胶体中微小的粒子和细微的悬浮体处于在显微镜和超显微镜下可以观察到的布朗运动,这是由于周围分子的涨落造成的,它们处于无规则的热运动中。它们由于受到分子的碰撞而无规则地撞击,因而呈现为不停的曲折运动。这可以说是一种放大的分子运动图像。正如纳斯特(Nernst)、F.埃克斯纳(Exner)以及其他人最早提出的,第二定律不是一种例外的情况,所有物理学定律都是具有统计性质的定律。
物理学决定论在量子理论中受到了根本的限制。如果我们谈到基本的物理事件,我们会遇到两个基本的和相互关联的事实,第一个事实是,虽然宏观物理过程好像是连续的,即机械能、光、电等能够以任意选取的量进行传递,但这在基本的物理事件中受到了限制。例如,如果一个原子发射或吸收光,那么这并不是以任何小量的方式发生的,而是以基本的单位发生的;要么放射和吸收光量子的整数的能量,要么就完全不进行放射和吸收。第二个事实是,原则上不可能用决定论的方式表示基本物理事件。简单的例子是放射性衰变。在这放射性衰变的过程中,镭原子核通过一种爆炸性的过程,放射出一个a-粒子,并由此变成氡。比如说,如果我们有一毫克镭,那么我们可以肯定地说,在大约1590年内,这个大量原子的聚集体将有一半衰变掉了。但是,我们不能说,某个原子是否过一会儿就会衰变或许要到几千年后才会衰变。即使我们能够确定原子核在任何一个瞬间的状态,也根本不可能预言它什么时候会发生衰变。因为,如果这里还有深一层的因果决定关系,那么,衰变将取决于时间,取决于外部因素诸如温度等。但情况并不是如此。我们只能说,一定数量的原子经过一定的单位时间会以同样的百分比发生衰变。
因此,依据现代物理学的证明,我们能对宏观物理事件作出单义的预言,即宏观物理事件涉及实际上无数基本的物理单位,因为在这样的事件中,统计性的涨落被拉平了。由于这个原因,经典物理学的定律,例如力学定律,好像具有严格的因果关系或决定论的特征。但是,就微观物理事件而言,它涉及个别的基本物理单位,不能作出单义的预言,而只能得出统计性的概率。这里有效的定律,只能够确定大量基本粒子的平均行为;只要指出一定的几率,就能够预言某一个别单位的行为。
这是以粗略的轮廓,将决定论即经典物理学的严格因果律,与非决定论即现代物理学的统计定律作了对照。那么,物理学的这种根本变化对生物学有什么意义呢?
活机体是由难以想像的大量的分子和原子构成的,这些分子和原子的排列顺序大约有一百万的四次幂(10[24])。因此,对于大多数生物现象,诸如新陈代谢、生长、形态发生、多数的应激性,等等,显然必须应用经典物理学定律样式的决定论定律。
但是,有某些生物现象可能属于例外。本作者早在ig27年,甚至在海森堡(Heisenberg)关系式表述(这形成了物理学的现代非决定论的基础)之前,就提出了“物理学革命对生物学的影响”的问题。1932年他论证应当重视可能性问题,“有机体内的微观物理事件可以传递到该系统更广的范围,因而被导入物理统计概率的领域。”物理学家帕斯考尔·约尔丹(Pascual Jordan)把这种观念发展成“有机体的放大器理论”,按照这种理论,控制中心的微观物理事件,例如基因,在有机体系统内被放大成宏观效应。玻尔、薛定谔等物理学家发展了相似的观念。这里,可以等虑两类物理学的不确定性,即分子运动论的“经典”涨落和量子物理学的不确定性研究表明,在某些生物过程中,微观物理事件实际上是起决定作用的。
这方面的第一个和最重要的领域,是由蒂莫菲夫-雷索弗斯基及其同事精心研究的放射遗传学,即用波长很短的射线(如X射线、镭射线或中子射线)诱发突变。这些研究产生了有关突变的“击中理论”(“hit theory”)辐射对生物客体的作用,可以与轰击感光物质相比。辐射是由作为不连续的能量单位的量子构成的。正像对实验的数学分析所表明的,单个量子击中基因的敏感区域足以引起一个突变。因此,突变的诱发服从于微观物理学的统计规律;然而,这些微观物理事件由生命系统的组织放大成宏观效应,因而,由辐射诱发的突变会在宏观物理水平上显现出来,比如,经过辐射处理的果蝇,它们后代的翅形或眼色发生了变化。
生物学受微观物理事件控制似乎已被确认的第二个领域是微生物遭破坏的领域。例如,如果培养的细菌经受辐射或被消毒,细胞便会先后被杀死。最简单的解释可能是各单个细胞对毒剂具有不同的敏感性。如果是这样的话,细胞的敏感性,从而细胞死亡的时间,就会遵循为一条变化的曲线,绝大多数个体显示出中间程度的敏感性和幸存时间,而少数个体显现出非常高或非常低的敏感性和相应的较短或较长的幸存时间。可是,实际上细菌的死亡曲线是可与镭原子衰变(p.164)的曲线相比的指数曲线,即每单位时间内被杀死的细胞数,与现存的细胞数成简单比。这表明,细胞的破坏是作为一种偶然事件发生的,它是由“击中”敏感中心而引起的。
应当把微观物理现象考虑进去的第三个生物学领域,也许是由冯·贝塔朗菲提出的(1937年)。例如,如果动物在定向刺激(例如光源的影响)下产生定向的活动,那么结果是动物会根据它对刺激作出向性反应还是拒性反应,决定趋向于光源还是离开光源。可是,动物在均一的环境中,例如,在黑暗的环境中或充满光亮的环境中,通常表现出“自发”的活动,在无可辨认的外界刺激的情况下这种自发活动的方向与速度都发生不规则的变化。假设在没有定向的光标志的情况下,动物不能把相等强度的脉冲传递给两侧的运动器官,以此来解释动物的上述行为,看来是颇为诱人的。在某一瞬间传入躯体右半部和左半部的脉冲之间的差异越大,脉冲传递的通路就越是转向不太活动的一边。同一动物在奔跑中出现的无规则的方向变化,表明不能把动物对直线的偏离归因于存留的形态条件(诸如侧面不对称);这些偏离必定依赖于神经系统中变化着的生理状况。而且,我们知道,甚至在未受刺激的神经中枢里,也出现象征自发兴奋的活动电流的无规则的连连发射。因此,可以设想中枢神经系统中发生的自发放电,是由持续不断的新陈代谢过程造成的。由于这些放电量是微小的,它们不等地分布在躯体两侧,因此引起跑动中的不规则变化。另一方面,如果施加一种外界刺激,比如光源的刺激,就会在一侧造成一种确定的较强的兴奋,从而导致动物直线的运动。但是,即使在这种情况中,仍可看到运动方向和速度的变化,这种变化不能被认为是由外界刺激引起的,而可能是由神经中枢兴奋过程中的自发波动造成的。
因此,在某些生物学领域内很有必要把微观物理事件考虑进去。然而,我们并不确信能以这种方式或从任何其他单一特征中找出关于“生命问题”的解决办法。首先,我们必须谨防有人常常鼓吹物理学的不确定性和自由意志之间有类似性的观点,其实,这是两个处于绝对不同层次上的问题。物理学的非决定论表明,能够用物理规律说明的,只是集合体的统计行为,而不是个别的事件。另一方面,伦理学中的自由意志概念,并不意味着事件在统计学意义上是随机的,而恰恰意味着事件服从于一定的规范;它的真实含意是:在一定境况中发生的行为,不是偶然的,而是由某种道德准则决定的。如果假定自由意志可以在物理学因果性留下的缺口起干预作用,这就等于活力论假定物质活动是受隐得来希控制的。我们还不能通过严格地论证生物界不存在隐得来希活动来驳倒活力论的假设。由于我们不能对有机体作出拉普拉斯式的预言,我们也不能完全通现有机体的物理构造,因而,总有可能用假设的活力论因素的“干预”来填补我们知识的空隙,甚至传统的决定论也确认这点。相似地,我们根据科学资料也不能驳倒这样的观念,微观物理学事件,是由自由意志决定的,而不是由物理学的统计规律决定的。然而,这两种假设都是混淆概念(metabasis eisallo genos),因为物理事件和精神感受处于实在的两个不同的层次。物理学只涉及客观现象及其规律;精神因素对物理事件的干预——不管这是指传统解释中精神因素干预物质原子的方向,还是指现代解释中精神因素介入微观事件——都超出了物理学理论的范围。关于物理学和心理学、自然与精神的关系,将在下文(下一卷)从机体论观点加以表述。
4.方法论问题与形而上学问题
生物学机械论和活力论之间的对立是有两重根源的。它既是方法论问题,又是形而上学问题。
方法论问题涉及这样的问题:解释生物现象,要应用什么原理和定律?这个问题在上几节中作了详细讨论。这方面的讨论不是没有必要的。因为物理学和生物学、无生命界与生命界之间的关系,属于科学思想的基本问题,每个时代的人们都必须以自己的方式对这些基本问题作出解答。然而,看来宜重提曾在别处发出的警告(冯·贝塔朗菲,1932年):
“关于生物定律经过最后的分析是否成为物理定律的一争论——这种争论构成了理论生物学的主要部分——看来是相当无成果的。因为,俗话说得好:‘未能逮住他,休想处置他。’机体论概念实际上所力求的是比对未来所作的无把握的、消极的预言更为实质的东西,即目前积极研究的万案。它指明这样的事实:对有机体中孤立过程的物理-化学解释,实际上几乎是迄今人们唯一使用的研究方法,这无助于人们洞见使这些孤立过程转变为生物现象的有序规律,而发现有机体的系统规律正是生物学的基本任务,但这个任务迄今难以引起‘机械论’生物学的关注。”
另一人面是形而上学问题,即世界上每一算件,包括生物事件在内,是否单义地由最终的物理单位和它们之间遵循自然规律发生作用的力决定的,或者在生命领域中是否有其他实在的要素,最终是心理性质的要素起作用,以指导这些粒子的活动。这个问题是无意义的、因为这两种概念都以经典物理学的机械论概念为基础,而且从现代物理学和认识论来看,这两种概念使用时没有一个是一致的。关于世界的过程是否“单义地”由最终的物理单位决定的问题变成无效了,因为这是一个既不能证明也不能反驳的陈述,即使原则上说也不能把最终物理事件看作是完全决定性的事件。“自然定律”更不表示任何力(不管这些力被认为是因果力还是终极力)的表现形式是拟人化的:因果力是模仿我对某个东西作出的推力的映象,终极力则是模仿我们自己有目的的活动。在现代物理学中,自然定律体现为现象之间形式关系的符号表述。自然定律终究是关于某些集合体的统计陈述,而不是关于引起事件过程的因素的陈述。最后,最终的物理单位不是作为形而上学实在的“物质原子”,它们只能用数学表达式从形式上加以描述,物理学并不能说出它们的“内部性质”。因此,形而上学机械论和活力论之间的对立变成一个假问题,因为它的前提即作为形而上学实在的惰性物质与起指导作用的心理动因之间的形而上学的二元论,是以不复存在的物理学世界观为基础的。
有时人们说,机体论概念不能真正解决机械论与活力论的争论。实际上,机体论概念不适合通常的二者择一。“机械论者”想要把生命现象分解成物理学和化学,发现某种扰动规律和模式的指称物,这种指称物超越了物理学和化学,因而在他看来是属于活力论的。另一方面,“活力论者”把这些特殊的生物学规律看作是机械论的,因为这些规律是从物理-化学规律中突现出来的,就它们的逻辑结构而言,生物学定律与物理-化学定律并没有什么不同。可是,实际上在更高水平上克服机械论与活力论的二者择一,正是机体论概念的核心。对于生命形态的特殊规律,机械论者持否认态度。活力论者认为这种特殊规律是超出科学范围之外的。而在机体论概念中,生命形态的特殊规律成为可以进行科学研究的问题。
由此提出了一种新的方法观。机体论方法是要发现精确表述关于作为一个整体的有机体系统的诸定律。“精确”这个词是严格采用的,而且是指它在物理学中使用的意义。但是,与孤立现象的研究(虽然这种研究总是心要的,是应当尽可能提出的)相比较,机体论方法是一种新的研究准则,这种准则已在许多领域被证明是行之有效的。
就有关哲学问题而论,对机体论慨念说明的每件事科学家都有权发表意见。机体论者不对事物的“本质”作出陈述,因而也不对生命与非生命之间“本质”区别的问题作出陈述。实际上,机械论与活力论的二者择一不是两种科学解释之间的争论,其中一个试图用物理-化学定律解释生命现象,另一个企图用其他某种特殊类型的定律说明生命现象。真正的区别,在于科学的解释和拟人化的“理解”之间的区别。科学只限于对客观现象的描述和解释,“解释”意味着使这些现象符合某种理论体系(p.161)。活力论者的任务是不同的:他想要做的是理解事物的“内在本质”,按照我们自己内心体验的映像去作解释。在形而上学范围内,对实在的心理解释,可能会发现科学不容许的地方。那么,这就不再是科学的解释,而是神话情趣的生动表达,是无法言传的隐喻和比喻。这是科学与诗之间奇异混合的见解,活力论正因持有这种见解而衰弱。活力论不是在客观自然界中,而是在超自然的中命原理中寻求有机整体性,它不能为生物学理论提供基础。另一方面,活力论通过将活力合理化而作出了肤浅的形而上学直觉,并试图把活力作为因果引入科学。这种神话的和形而上学的实在观,可能是真的,也可能是虚幻的——这不是一个科学问题。
5.科学——统计的等级体系
所有自然定律都是统计性定律。它们是关于集合体的平均行为的陈述。整个科学表现为一个统计的等级体系。
在这个等级体系的第一层次是微观物理学的统计学。在基本物理事件的领域中,决定论的处理在原则上是不可能的。如上所述,微观物理事件也介入某些生物现象。
第二层次由宏观物理学定律即其中涉及到大量基本物理单位的宏观物理现象的定律构成。这些定律本质上也是统计的。可是,由于统计涨落因大数定律而被拉平,所以宏观物理定律具有明显的决定论特征。与基本物理事件的统计学相比,宏观物理学定律处于更高的层次。例如,宏观力学定律或流体力学定律不再考虑基本物理事件,原因很简单:我们不能,也不需要追踪每一个分子,而只需要对该系统作总的统计处理。
更高的一个层次是生物学领域。如前所述(p.155),一方面我们能分离单个过程,并用物理学和化学的术语对之下定义。另一方面,我们能在确定生物系统所包含的个别的物理-化学过程之前,陈述作为一个整体的生物系统的总定律。
最后,存在着适用于超个体生命单位的定律。例如,我们可以陈述某个生物群落中各个种群的生长定律(p.52),或某个人类种群中死亡发生率的定律。这种定律是保险统计学的基础,因而它具有重要的实用价值和商业性价值。这里考虑的单位是个别的有机体,而这些定律不可能,也不必要考虑有关生理的或物理-化学的过程。
这样,在不同的生物层次上可以建立起精确的、定量的定律,并构成一个假说-演绎系统。就这方面而言,生物学定律可以与物理学定律相比,但与后者相比,生物学定律涉及更高层次的单位。
在这统计的等级体系中,我们发现了一个值得注意的现象,我们可以把它描述为自由度增加的现象。
例如,普通化学的化合物是用结构式来表示的,这种结构式单义地确定化合的原子数或基团数。这甚至适用于复杂的有机分子。可是,进入大分子化合物(p 26),统计值取代了刻板的结构式。例如,人们只能说,按平均数计算,三百个糖残基通过一个共价键链而化合,在植物纤维素的一个分子团中,平均大约有六十个共价键链。
空间排列也是如此。矿物晶体是三维晶格。相反地,在有机领域,“中介形态”即仅有二维或一维的大分子排列,起了决定性的作用。例如,它们形成大量的小纤维结构,这些小纤维结构在细胞构造和有机体中是至关重要的,它们支撑着组织、肌肉、神经等等;在这些小纤维中,线状分子是平行于轴线有序地排列的,而不是无序地朝其他方向排列的。
对化学过程也可以作相应的考虑这里,我们发现自由度随着复杂性的增加而增加。有机体内的化学过程是靠催化作用进行的,反应要么慢慢加速,要么就不发生加速。简单的催化作用,诸如,用多孔的铂使氢和氧化合成水,只能以一种方式发生。可是,化学工业中应用的比较复杂的催化活动,尤其是活机体内发生的催化活动,有几种可能的反应方式。例如,在适当的温度和压力下,一氧化碳和氢可以化合成甲烷,或甲醇,也可以化合成(分子式)较高的乙醇,或液态的碳氧化合物。用镍催化剂只能产生甲烷,氧化锌-氧化铬催化剂几乎只能产生纯甲醇,等等(米塔施)。在这类系统中有几种在热力学上是可能的反应方式,其中会发生哪一种反应,取决于所用的催化剂。工业化学家的技术就在于选择适合于一定目的的催化剂系统。相似地,有机体内通过多种可能的万式得以进行的化学反应,是生理过程的重要基础。
晶体的外部形态是由晶格决定的分子排列的表现。例如,氯化钠的晶格表现为微型的立方体,宏观晶体也具有立方体形状。有机形态是极其多种多样的、它们作为一个整体是由其组分排列的非常多样的变化决定的。例如,我们可以回想菌盖的形状,这种形状是预先确定的,是该物种的特征,它是由菌丝构成的。菌丝是朝各个方间生长的,它们的排列是无规律的。我们可以从以下方面说明无机形状与有机形状的区别。前者的结构即内部排列的规律是不变的,它的形态或外部形状是结构的表现,并且是可变的。在这个意义上,例如,晶体结构是由晶格决定的,我们在大多数晶体中看到的变形早非本质的。与此相对照,在生命系统中,结构是可变的,而形状则是确定的。好比说,后者表现为一个模子,期中塞满了在很大程度上可以改变数量和排列的细胞。值得注意的是,高分子化合物在这方面也是中间体。就蛋白质而言,这个共同的“模子”可以塞满不同的氨基酸。例如,毛发的角蛋白,肌肉纤维的有收缩力的肌浆球蛋白。血液凝结的血纤维蛋白原,虽然它们的化学和物理的性质不同,但都具有同样的分子构型(阿斯特伯里[Astbury])。磺胺类药的化学治疗作用很可能由磺胺分子和细菌生长物质的分了之间结构的相似性造成的;因此。前者可以取代后者,从而抑制了细菌的生长和繁殖。
自由度以不同的方式增加还表现在等终局性上。有鉴于封闭系统向终态的发展是由初始条件决定的,开放系统能够以不同的方式达到相同的终态。
最后,我们发现了系统发育和历史发展的可比现象、某些总规律看来是确定不移的;但是,它们在特定条件下的实现取决于偶然性:在系统发育中,取决于适当的突变出现,在历史发展中,取决于具有统治能力的人物的出现。
这样,在统计的等级体系中,自由度好像随着我们进入更高的层次而逐步增加;这不是基本物理事件的非决定性意义上的自由度增加,而是作为一个整体的过程遵循确定的规律意义上的自由度增加。但是,对个别事件来说,仍留有个同的可能性。     
第六章
科学的统一
苏格拉底学派的哲学家阿里斯提普斯航海遇难,漂流到洛得斯海岸时,看到了砂上描画着几何图形,便向同伴们叫喊道:“我们幸而有了希望啊!因为已经看到人们的踪迹了!”
--维特鲁威:《建筑》
在大都,忽必烈曾下令
建造一座宏伟的逍遥宫:
圣河亚弗在那里流经
深不可测的岩洞,
直泻入不见阳光的大海中。
--科尔里奇:《忽必烈汗》
1.引言
如果我们通观现代科学的各个领域,可以看到一种戏剧性的、令人惊异的进化、在各个完全不同的领域中出现了相似的概念和原理,虽然这些观念的类似性是各个领域独立发展的结果,而且个别领域的工作者几乎没意识到这种共同的趋势。因为,在科学的所有领域中都出现了整体原理,组织原理,实在的动态概念原理。我们还可以列举更多的共同特性,诸如对自然规律基本的统计特征和实在的内在矛盾性的认识。看来,要用概念结构描述实在,仅仅使用单一的构架是达不到目的的,而必须使用成对既对立的又互补的概念。这种对立互补概念在量子理论的互补原理(p.180)中得到了表达;互补性也可能以某种不同的形式适用于生物现象的描述(p.155)。另一个基本的洞见是,与经典物理学的连续性概念相反,基本事件具有非连续的性质、按照量子理论,实在的最终单位是非连续的,并且是不可再分的。生物学中与其相似的是突变论,按照突变论,进化不是以连续转变的方式,而是以非连续的跳跃方式进行的。量子论与突变论的出现不只是一种历史的巧合,后者与前者保持着密切的关系(pp.95,165f.),它们正好建立于同一年即1900年。也许,我们可以加上生理学中的全-无定律,这个定律也差不多是在同一时期提出的,按照这个原理,生理活动,比如肌内或感觉器官的活动,不是连续地增强的,而是以跳跃的方式增强的,因为随着刺激强度的增加,新的要素,期中的每一个达到其功能的最大值时才能发生作用。
2.物理学
经典物理学试图把所有自然过程分解为原子的活动,分解为按照力学定律、吸引与排斥的定律在空间运动的微粒。现代物理学不只是直接证实了原子的存在;它揭示了原子的结构,并完全攻克了放射性、元素嬗变和原子能释放等新领域。然而,正是这些发展推翻了机械论的观念。
机械论物理学的第一准则也许是要把物理过程分解为可分离的局部事件。与此相反,现代物理学看来必须要有整体性概念。按照海森堡的不确定原理,不可能同时确定电子的位置和动量。要确定电子的位置,必须照亮电子;但这意味着光量子击中电子,由此引起电子动量的变化。因此,位置确定得越是精确,动量则越是不能精确地确定,反之亦然。由此得出以下的结论:第一,严格的决定论在微观物理学领域是不可能成立的(pp.163f.),因为测不准关系给所有测量所必需的同时确定设置了不可克服的限制。第二,根据海森堡关系,就物理学微观事件而言,测量仪器原则上不能与被测量的实体分开。这样,在微观物理学中出现了整体原理。事实上,整体原理在微观物理学中比在宏观物理学层次上具有更基本的意义(p.192)。因为,对于微观物理学来说,不只是这样的一个问题:为了认识整体,必须认识各个组分以及组分之间的关系;相反地,在基本事件的层次上,进一步的分解在原则上变得不可能,它们只能作为一个整体加以处理。
第二,最有意义的是,在现代物理学中出现了组织原理。经典的定律从根本上说是关于无序的定律,而现代物理学和化学的中心问题是组织问题。正如波尔兹曼所证明的,因果关系朝破坏有序的方向起作用,因为经过一定的时间,热运动不断增加,起初存在的所有的有序无可挽回地受到破坏。但是,一个原子,比如说,一个汞原子,它由一个原子核和八十个行星般运动的电子构成,它保持着自己的组织;光谱线发射的系统,原子的化学性质等都依赖于这种组织;原子不管受到周围粒子热搅动的连续不断的撞击,仍保持着自己的组织。正如量子理论表明的,原子不顾热运动的干扰而保持其稳定性和它的组织,是以基本物理事件的非连续性为基础的。原子不能处于无论什么样的状态,而只能假定它处于具有不同量子条件的分立的状态。如果这些状态用数字1、2、3等表示,那么状态1是最小能量的基础状态。在这种状态中,原子正常地存在;2、3等是激发状态,如果得到必要的能量,原子会以跳跃的方式达到这种状态。由于这个原因,太弱的扰动是无效的,因而原子可以不顾热运动而在无限的时间内保持稳定。只有当温度增加时,它才通过量子跃迁的方式变成激发态。对于分子、晶体、固态、甚至基因,也可以作相应的考虑。基因是具有特定组织和高度稳定性的大分子。只有在比较罕见的情况下,比如由于量子的打击引起突变或由于热涨落引起自发的突变,会跃迁到新的稳态,由此发生遗传性的变异。这里就有物理学的量子论和生物学的突变论之间的联系。基因分子向新的稳态的转变,只能通过跳跃的方式发生,因为能量的转变不是以任何微小量的方式发生的,而是以量子化的方式发生的。从生物学上说,这为从一个亚种到另一个亚种的转变不是连续的,而是以跳迁的方式发生的现象,提供了解释(cf.p.95)。
现代物理学的第三个基本变化,在于把刚性的结构解析为动态。经典物理学把原子看作像微型台球的固体。根据现代物理学的看法,它们是微小的行星般运动的系统,其中原子核像中心的太阳,它由带正电荷的粒子和无电荷的粒子(质子和中子)组成,负电子围绕它运行。同时,物惯表现为过程,表现为动态。质量与力的对立,物质与能量的对立,在日常生活和经典物理学中是明白无疑的,但在微观物理学层次上则消失了。电子不是微型的刚体;它是能量的集中,物质波或波包。由于这个原因,物质转变为能量,能量转变为物质,是可能的。伽马(Y)射线的量子,即高频率的X射线,可以转变为带负电和带正电的孪生对粒子,电子和正电子。反过来,物质也可以转变为辐射。经典的质量守恒原理和能量守恒原理统一为爱因斯坦综合的守恒定律。而且,在某些条件下,基本物理单位表现为粒子,而在另一些条件下表现为波动或波。根据玻尔的互补原理,粒子和波是对立的、但又是关于同一物理实在的必不可少的和互相补充的概念。
整体、组织、动态——这些一般概念,可以说是与机械论的物理学世界观相对立的现代物理学世界观的特征。
3.生物学
近几十年来,生物学思想运动趋向于“机体论概念”。由于这个概念在很大程度上是潜意识的和无名的,它的意义甚至更加明显。这不是孤立的现象,而是我们的科学概念总变化的组成部分。
我们已考察过物理学机械论观点在生物学中的影响。按照物理学机械论的观点,生物学的目标在于把生命现象分解为可孤立的部分和过程(pp.10f)。于是,有机体被看作是许多细胞的总和,有机体的功能被看作是许多细胞活动的总和。同样地,像物理事件被看作是受偶然性规律支配的那样,有机体的组织和功能被看作是随机突变和选择的产物。另一方面,这种观点符合经济活动的时尚和经济学理论。事实上,达尔文将马尔萨斯关于人口增长超过其资源的理论普遍化,并把它应用于整个生命界。所谓生物界中的生存斗争不是别的,而是工业时代开始时曼彻斯特学派鼓吹的自由竞争在生物学中的应用。生物学中的功利主义观念符合总的社会思想意识。生命的机器理论,完全是人们以技术控制无生命界而自豪,也把生物看作机器这样一种时代精神的表现。
人们认识到机械论概念的局限性,最初导致了活力论。活力论假定有机体各个部分的聚集和机器-结构是受目的因控制的。随后,人们认识到机械论和活力论的观点都是不妥的,导致了机体论概念的产生。机体论概念试图将科学意义赋予整体性概念。我们同样可以在生物学、医学和心理学中看到这种共同的趋势。
我们已详细地论述过现代生物学思想的基本概念及其对不同领域的影响。首先是整体性概念。我们不仅必须考虑有机体的各个部分和个别过程,而且必须考虑它们共同的相互作用和支配这些相互作用的规律。这些无论在有机体受扰动后的调节现象中,还是在有机体正常的活动中,都清楚地表现出来。其次是组织概念。生物界的基本特征在于它是巨大的等级体系,它从有机化合物分子经过自我增殖的生物单位,延伸到细胞和多细胞有机体,最后到生物群落。新的规律均在组织的每一层次上显示出来,而生物学研究的任务就在于逐渐地揭示这些规律。最后是动态概念。活结构不是存在,而是变易。它们是物质和能量不停流动的体现,物质和能量不停地流经有机体同时又构成有机体。动态概念构成了生物学许多领域中精确定律的基础,也提供了理解诸如等终局性那样的现象的基础,等终局性迄今仍被人们看作是不能用科学的术语解释的神秘现象。
虽然近几十年来许多作者提出了类似的观点,但本作者可以断言,他从1926年起发展起来的机体论概念,可以说是第一个逻辑上表述一致的新观点,这一新观点可作为生物学的作业假说。这个概念产生的丰硕成果,可以在后面得出的许多结论中看到,而且由后来的研究所证实并被详尽阐述。那么,再次概述这些方面的发展,也许是有益的。
许多科学家已接受了机体论观点,有趣的是,可以看到其中有些科学家来自对立的阵营。例如,生物化学家尼达姆早先曾严厉地批判过生物学中的整体概念,后来他采纳了机体论概念。正如尼达姆(1932年)所说,生物学理论的中心问题是组织问题。虽然J.S.霍尔丹(Haldane)考虑到对生物学问题的充分解释涉及到生命系统的组织问题,但冯·贝塔朗菲和伍杰的机体论概念表明,有必要研究生命系统的组织实际上究竟是什么。因而,组织不是一种解释问题,而是生物学中最迷人的和最困难的问题。承认这个事实,与活力论毫不相干。另一方面,在动物行为领域从事工作的阿尔费德斯(Alverdes)(1933年),起初坚决主张活力论观点,后来接受了机体论概念。阿尔弗德斯(1936年)、贝文克(1929年)、卡纳拉(Canella)(1939年)、格斯纳(Gessner)(1932年,1934年)、特里比诺(Tribino)(1946年)和昂格雷尔(Ungerer)(1941年)的著作,
可以说是对机体论概念的深入介绍。对于机体论概念,比宁(1932年)、格罗斯(1930年)和M.哈特曼(Hartmann)(1937年)从机械论方面作了批判的论述,文茨尔(1938年)从活力论方面作了批判的论述,布罗伊勒(1931年)、伯卡姆普(Burkamp)(1930年,1936年,1938年)和林斯鲍尔(Lins-bauer)(1934年)从中间立场作了批判的论述。在贝文克(1944年)、比察里(Bizzari)(1936年)、布罗默(Brohmer)(1935年)、迪肯(Durken)(1937年)、冯·弗拉肯贝格(Fraken-berg)(1933年)、H.约尔丹(Jordan)(1932年)、O.苛勒(Kohler)(1930年)、尼达姆(1936年,1937年)、冯·内尔加德(1943年)、奥尔德考普(Oldekop)(1930年)、里特(Ritter)和贝利(Bailey)(1928年)、E.S.拉塞尔(Russell)(1931年)、扎佩尔(Sapper)(1930年)、昂格勒尔(Ungerer)(1941年)、韦莱(Wheeler)(1929年)、伍杰(1929年)、沃尔特里克(1940年)等人的著作中可以发现相似的观点,其中某些观点是由他们独立地提出的,另一些观点是在和我们的工作相互交流中提出的。物理学家薛定谔(1946年)也独立地得出了类似于机体论的概念,“生命问题——虽然它并不超脱迄今所知的物理规律——但它可能包含迄今未知的不同的物理规律。然而,一旦人们认识这些新的物理规律,这些规律会像已知的物理规律那样整合成为这门科学的组成部分。”米塔施(1935年,1936年,1938年)关于生物催化和关于自然界因果关系的等级体系的工作,也与机体论概念有密切的关系;阿尔弗德斯(1937年)的马堡学派关于动物行为的工作,H.约尔丹(1941年)关于生理学基本原理的论述,赫希(Hirsch)(1944年)关于动态组织学的观点,也是如此。在发育生理学领域,达尔魁(1941年)按照自己的看法表述了机体论概念。无需再作详细的讨论,我们可以注意到现代生物学的总趋势是符合机体论概念的,这个作业假说在生物学的所有领域中得到了应用。这里只能对本作者及其同事所作的应用以及与之密切相关的发展状况,作一个概述。
关于 活组织 问题,本作者在1932年就表明它是未来的研究纲领:
“有种看法认为,物理结构的等级体系应以蛋白质的胶态分子团为终点,超出这个限度,只能应用无序的定律(即溶液中的概率分布的定律,这个定律来源于热力学第二定律)或摩尔定律;因此,有机体或者可能是纯粹的‘混合物’,或者可能是刚性的‘机器’。这种看法似乎完全是任意的假设,它对遗留的实际的问题——有机体生命过程的有序性——毫无所知。相反地,从胶态分子团排列(其规律部分地为人所知)到非刚性程度和动态程度更高的有序状态(其规律尚未为人所知)即被称为原生质和细胞的‘活组织’,很可能有连续的过渡。当然,活组织不仅是‘非刚性’的,而且是‘动态’的。这里,‘组织’问题与‘稳态’问题联系了起来。”
正像弗雷-维斯林介绍的,原生质的亚显微形态学在当时出乎意料的程度上遇到了这种挑战。蔡格(Zeiger)(1943年)证实了原生质组织的“动态”概念(p.34)是必需的。在我们早期工作中形成的关于 细胞理论 及其局限性的概念(1932年,cf.pp.38ff.),与赫泽拉关于“细胞间组织”(1941年)的有意义的工作是一致的。在更高的组织层次上,动态概念克服了 结构 与 功能 之间的明显对立,把有机体看作是以不同速度发生的诸过程的等级体系。这个概念是由冯·贝塔朗菲和本宁霍夫(1935年,1936年,1938年;cf.pp.134ff.)提出的。根据动态观点和机体论观点,对 同源 概念重新下了定义(冯·贝塔朗菲,1934年;见下卷)。冯·纳茨默尔(Natzmer)(1935年)对 生物个体性 的看法与我们的看法几乎在本义上是一致的。路格迈尔(Lugmayr)(1947年)根据托马斯主义哲学的观点讨论了这个问题。
人们发现机体论生物学的观念,在生态学中也是有用的。在林学中,莱梅尔(1939年)认为森林是一个在个体的变化中保持其自身的生物群落,他根据这种森林的机体论概念,引出持存森林原理。这个有趣的例子表明,机体论概念不仅有理论价值,而且也能适用于重要的实际问题和经济问题。范泽洛(Vanselow)(1943年)也说明林学的现代概念与机体论生物学是一致的。H.韦贝尔(Weber)(1938年,1939年)根据机体论概念,对普通生物学体系中的 环境 (umwelt)概念下了定义。冯·于克斯屈尔(von
Uexkull)在引用这个术语时,只强调了有机体与环境之间的关系即对感官-刺激作出反应这一面。因此,他的 环境 概念只限于感官生理学,但事实上这是一个伪心理学概念。可是,按照韦贝尔的看法,我们应当在更广泛的意义上给环境概念下定义。这个概念表示对有机体发生影响的整个系统。这个系统依赖于有机体的特定组织,同时,也使有机体的自我保存成为可能。因此, 环境 不仅包括能作为刺激而发生作用的东西,还包括有机体自我保存所必需的全部综合条件。另一方面,环境概念在人类活动领域中受到了限制。动物的 环境 依赖于它们的肉体组织。可是,在科学的演进中,出现了逐渐排除环境概念中的拟人化特征的情况,即环境观念中依赖于人类知觉器官特定组织的那些特质和范畴被不断排除(冯·贝塔朗菲,1937年)。这种观点类似于格伦(Gehlen)对于冯·于克斯屈尔所提倡的 环境 概念的批评;他也断言这个概念不适用于人类文化活动。本作者对人的独特性问题也曾作过讨论(1948年;见下卷)。
开放系统 理论在物理学、物理化学、生物能学和生理学领域引出了许多新的问题和新的见解(见pp.125ff,131ff,以及下卷)。普里高津和维亚梅(1946年)、普里高津(1947年)、赖纳(Reiner)和施皮格尔曼(1945年)、斯克拉贝尔(1947年)等人的工作,我们已经提到过了。德林格尔和韦茨(1942年)将开放系统理论应用于 基本生物单位 (病毒、基因),把这些基本生物单位看作是处于稳态中的单维晶体;冯·贝塔郎菲已提出了一个更为详细的模型概念(1944年,cf.p.30)。
多特韦克(Dotterweich)(1940年)对“生物平衡”问题作了综合的研究,尽管他对这个概念的解释非常广泛,从而包括了多种性质的现象。因此,他的概念大部分仍是形式的。他区分了迄今所理解的“生物平衡”概念的三种应用:(1)形态学上“器官平衡定律”(乔弗鲁瓦·圣伊莱尔,歌德);(2)生物群落的平衡(埃舍里希[Es-cherich]、弗里德里希[Friederichs]、沃尔特里克[Woltereck」等);(3)作为动态平衡或稳态的有机体论的生理学概念(冯·贝塔朗菲)。这些概念中,最后一个概念看来是基本的。可以将“器官平衡”看作是有机体在其异速生长过程中达到的稳态(p.139)。可是,生物群落的平衡并不表现为物理、化学实体的稳态,而表现为超个体单位的更高层次上的稳态。在开放系统的一般运动学(有点相似于我们的“系统论”)和梯度原理的基础上,施皮格尔曼建立了形态发生中的竞争、调节、优势和确定的定量理论(1945年)。
有机体作为开放系统的概念,导致了 动态形态学 (冯·贝塔朗菲,1941年),即把有机形态解释为有序的过程之流的结果。这使形态学和生理学的方法和观点的整合成为必要,并为发现 新陈代谢、生长 和 形态发生 的定量定律铺平了道路。本作者及其在该领域工作的团体对于这个问题的论述,前面已作了列举(pp136ff.);在下卷中,将作更详细的概述。克拉特(Klatt)(1949年)对动态形态学已作了重要的讨论。他最早(1921年)在形态学领域中应用定量方法,引进了现被称之为异速生长的定律,他评论了对有机形态进行定量分析的意义、成果和限度。
关于近来的实验结果与从机体论观点推导出来的 神经系统功能 的概念之间的相符,已在前面指出了(p.121)。
医学科学的发展与现代生物学的发展是非常相似的。微耳和的细胞病理学旨在将疾病分解为细胞所受的扰动。他拒绝诸如体质之类的概念,而体质概念在现代医学中再次变得十分重要,恰恰是因为它建立在有机体作为一个整体的概念的基础上,但微耳和却认为这是错误的。然而,现代医学显然是朝机体论观点的方向发展的;内分泌学或人的体质理论就是机体论医学的范例。
事实上,机体论概念在医学领域中作为一种“解放的成就”而受到欢迎。按照冯·内尔加德(1943年)的看法,H.齐默尔曼(Zim-mermann)(1932年)可能是第一个认识到现代生物学概念对医学实践具有意义的人。正如他所说的,“由于医学主导观念的发展与理论生物学主导观念的发展之间有明显的一致,医学所取得的任何一点成就都可看作是具有历史意义的成就。”机体论概念似乎“变得与现代医学科学的主导观念和必要假说最接近。”齐默尔曼在后来的一篇论文(1935年)中根据机体论生物学批判了所谓“生物医学”。罗特舒(Rothschuh)(1936年)在对现代医学的各种理论倾向作比较性的概述时,驳斥了机械论、活力论和心理活力论的理论,称赞机体论概念是现代医学可靠的理论基础。克拉拉(Clara)(1940年)关于医学中整体性问题的表述是紧接着冯·贝塔朗菲(1937年)所作的陈述而提出的。当妇科专家塞茨(Seitz)(1939年)就生长、性和生殖的调整的生物学、生理学和医学问题,提出“生命过程(包括正常的和病理的)的整体论观点”,这个观点与机体论概念甚为接近。一般来说,我们的生物学概念与主要医学家如阿朔夫(Aschoff)、贝蒂、比尔(Bier)、布鲁格施(Brugsch)等人强调的概念是非常符合的。内尔加德(1943年)关于身体理疗的工作与机体论概念有着密切的关系。动态形态学概念与克雷奇默尔(Kretschmer)的马堡学派的康拉德(Conrad)(1941年)关于人类的体质类型的工作之间也有明显的一致,虽然这两条思路是完全独立地发展出来的。机体论概念对医学的影响特别值得注意,因为医学还有临床实践这一面,所以它是对生物学理论的最好检验。
机体论概念在 心理学 领域中也得到了应用。蒂姆伯(Thumb)(1944年)概述了机体论概念对于心理学的意义,估价了动态平衡和稳态观念作为心理学领域模型概念的意义。人们在心理学领域中发现了相似于生物学领域的原理。尤其当人们就像根据动态形态学观点思考形态发生那样,从发育规律的观点沉思人类环境(umwelt)的建立问题时,生物学意义上的环境概念(冯·于克斯屈尔、韦贝尔)与认为这种概念不适用于人类的观点(格伦)之间的争论消失了。正如生物学中的动态和整体概念与心理学中的格式塔理论具有类似性,生物组织的等级体系与个性的阶层(罗特哈克尔[Rothacker」,1947年)有着对应性。机体论概念也应用于精神病学和社会学领域(伯罗[Burrow],1937年;赛泽[Syz」,1936年)。行为被看作是组织内张力的模式,对于精神疗法来说,它主张不应把神经病患者看作孤立的个体,而应视之为处于一定社会单位中的个体。同时,上面提到过的人类独特性(pp.184f.)的另一方面问题变得明显了。在动物王国中可以发现对抗与合作的倾向,但是,我们只是在人类行为中发现了憎恨、罪恶和社会的无政府状态。这些现象似乎与感情的倾向有关,而感情的倾向依附于这些语义的方式——形成概念与语言表达——正是这些遂使人类提升到所有其他动物之上的地位。
机体论概念在 哲学 中也有许多应用,以下我们所知的有关应用就是对我们学说的发展。卡西尔(Cassirer)学派的拉森(Lassen)(1931年)论述了与机体论概念有关的物理学非因果性问题和目的论问题。费赖斯(Fries)(1936年)把机体论概念作为归纳的形而上学的基础。巴劳夫(Ballauff)(1940年,cf.以及1943年)对冯·贝塔朗菲的机体论概念和N、哈特曼(Hartmann)的分层(Schichtengesetze)学说作了综合。按照分层学说,可以把实在看作连续叠加的层次,每一层次有它自己的规律。巴劳夫根据等级秩序和稳态保持的原理采纳我们关于有机系统的定义,以机体论的方式(即持存于有机体中的唯有其特殊的有序规律)表征自主性,并且阐明了有机系统概念的哲学结论。
我们已提到的 等终局性 的新概念,作为我们的理论在哲学上的重要推论,为迄今被人们认为是形而上学和活力论的定向性概念提供了物理基础。
机体论概念的最终概括是 一般系统论 的创立(冯·贝塔朗菲,最早在1945年;见pp.199ff.以及下卷),一般系统论是精确的、数学化的本体论的基础,也是不同科学领域中一般概念的逻辑相应性的基础。
因此,可以说,机体论概念在从生物学的特殊问题直到人类知识的一般问题的许多领域中被证明是富有成果的。这个概念的最令人信服的证据是,它已被应用于完全不同的领域,如物理学、物理化学、解剖学、胚胎学、生理学、林学、医学、心理学和哲学;并且使所有这些领域中的许多问题得到的阐明。
4.心理学
现代心理学的发展具有特殊的意义,因为正是在这个领域内第一次对整体性问题作了科学的探讨。正像生物学探讨躯体现象那样,传统心理学试图把精神生活分解为孤立的事件,即心理原子。例如,认为视觉是对应于视网膜单个细胞兴奋的基本感觉与大脑皮层视觉区相应的细胞的总和。但这种概念的不适应性不久就变得明显了,心理学因此而引用了控制的因素,如“统觉”,按照冯特(Wundt)的说法,统觉是一种可以与生物现象中活力因素的假设相比的解释。格式塔心理学试图克服这种二难困境:按照冯·爱伦费斯(von
Ehrenfels)(1890年)的说法,可以把格式塔定义为心理的状态和事件,这些心理状态和事件所特有的性质是不能通过其各个组分的累加获得的(爱伦费斯第一准则)。例如,一幅感觉到的几何图案,不只是各种色点的总和;一首乐曲,不只是许多单个音符感觉的总和;一句格言,也不只是许多单独词义的总和。而且,同样的形状可以用其他的颜色,并在视野的不同部位呈现出来。同一首乐曲可以用不同的音调演奏。同一个意思可以用不同的词表达。因此,格式塔当它的组成部分变化时,它仍保持原样。格式塔是可变换的(爱伦费斯第二准则)。
现在,传统理论用结构机械论解释精神生活中的有序性。一种感觉器官,例如视网膜,受到大量刺激。来自视网膜每一个点上的局部的兴奋,通过固定的神经通路,传导到大脑视觉中枢的相应终点,因而视网膜要素的镶嵌图案与大脑皮层神经细胞相似的镶嵌图案是一致的。同样,才干、识别能力、联想、条件反射等,可以用学习过程中有关中枢之间神经通路的确定加以解释。
与此相照,格式塔理论证明,不可能把知觉解析为基本感觉和基本兴奋的纯粹总和。例如,像三角形这样的图案,即使它呈现为不同大小的形状,出现在视野的不同部位,我们也能辨认它。视网膜受刺激的点是不同的,相应地,兴奋过程通过不同的神经纤维传递到视觉中枢的另一些神经细胞。然而,不同的视网膜细胞、神经纤维和视觉中枢的细胞的兴奋,产生相同的印象,即“三角形”。反过来,相同细胞的兴奋可以产生不同的印象。例如,如果那些视网膜细胞起初落在其上的是三角形的映象,后来受到圆形图案的刺激,那么就会有不同印象产生。
格式塔是按照动态规律形成的心理整体。最重要的原理是完形趋向(pregnance)原理,即呈现最简单的可能发生的形态或最“有意义的”形态的格式塔趋向。例如,如果在一瞬间内,排列成圆圈的九个点呈现到眼睛中,第十个点稍微在圆圈之外,这个在圆外的点好像移向圆周,以完成最有意义的可能发生的格式塔。或者,如果瞬间呈现的图案显示出许多细小的缺口,那么会看到弥合这些缺口的运动,该图案缺口的各端闪现在一起。如果一根棍棒在视网膜上的投影经过盲点,那么就看不到任何缺口,而如果某个人的手投影落在观察者固定眼睛的盲点上,那么就看不到他的头。其原因是,只有体现一定几何图案的格式塔才可能是完整的。
因此,知觉不是孤立的和彼此无关的感觉的总和,而是感觉形成受动态原理支配的完形系统。
记忆理论很可能也是以相似的方式而重新形成的。经典记忆理论的观点是累加的观点和机械论的观点。它假定早先兴奋的记忆痕或‘却象”保留在几组神经节细胞中,好像贮藏在无数仓库中,这些仓库由无数神经通路相互连结起来——这种观念显然是行不通的(R.瓦勒[Wahle])。可是,如果格式塔知觉是系统过程,以动态的方式组织起来、分布在较大的大脑皮层区上,那么兴奋的后果不会由留在诸单个细胞中的孤立的记忆痕构成,而会留在较大脑区的某种变动中。事实上,实验和临床的经验表明,就记忆而言,大脑不是作为细胞或有明显界线划分的中枢的总和而发生活动的。大脑中局部的损害并不只是破坏某种单一功能,而是其他功能都受到影响,而且,受损害部位的功能越是重要,对其他部位功能的影响就越强烈。由此,提出了与通路理论相对立的另一种概念。这种概念可以假定,在学习期间,当两个有联系的刺激起作用时,脑过程表现为一个整合的总体。相应地,它会留下整体的记忆痕。在学习期过去后,新的部分的刺激会唤醒作为一个整体的记忆痕,由此产生联想、回忆或条件反射(冯·贝塔朗菲,1937年)。
如果知觉不是若干单个感觉组成的镶嵌图案,而是已被领悟的格式塔按照动态规律将它们自己组织起来的话,那么我们必定可以进一步断定,与形成知觉相应的生理事件,不是若干单个兴奋的束或总和,而是整体或“格式塔”。从这种考虑出发,W.苛勒(Kohler,1924年)提出了格式塔是否只限于心理学范围的问题。他强调,一般说来,物理系统不是单纯的总和,而是符合爱伦费斯准则的。因此,比如关于电荷在导体上的分布状态,是不能通过导体各个单独部分上的电荷的累加而获得的,而是取决于导体的整个系统。而且,一部分电荷移动后,系统又会重新确立。一般说来,物理系统中的状态(例如,导体上的电荷分布)和过程(例如,稳定的电流在导体系统中的分布)取决于该系统所有部分的状况。因此,它们被表征为格式塔。最后,苛勒(1925年)将同样的观点应用于生物学问题。有机体中的过程按照整体的需要作出调节,这是生命现象最显著的特征。甚至包含所有单个反应的完整的物理-化学知识,也不可能对生命现象作出充分的理解。机械论者确信,生命活动的有序性,是由机器式的结构赋予的;但这种解释面临生命活动的调节现象而遭到失败。另一方面,活力论者乞求超自然的力量;但是,正如杜里舒的海胆实验所表明的,部分依赖于整体,这并非是活力论的特征,而是格式塔的一般特征。热力学第二定律所适用的每个系统最终达到平衡态,这可以用任何部分的状态依赖于整体系统的状态加以表征。所以,机械论用预先建造的机器的模式解释有机体中过程的有序性,活力论求助于超自然的力量,而与这两种观点相对照,还有第三种可能性,即整合系统中的动态调节。就这方面而言,物理学、生物学和心理学都与其中由动态造成过程有序的系统有关。基本的原理是平衡原理或完形趋向原理。在物理学中,这个原理表现为趋向于象征平衡态的最小值状态。在生物学中,有机体内过程的有序性和受扰动后的调整,同样可以看作是趋向于建立平衡态的结果。在心理学中,精神事件看来是格式塔的。另一方面,物理学领域中的格式塔证明,允许将基本的生理事件解释为格式塔过程。作为经验的格式塔表现为大脑兴奋过程平衡分布的相互关联,而大脑兴奋过程则趋向于最简单的可能发生的完形。
苛勒的概念标志着现代机体论系统概念的引用。反对格式塔理论的主要理由有两条。第一是认为它缺乏实验的可能性,它只能纲领性地断定经验的格式塔对应于大脑中兴奋的格式塔式过程。人们所作的任何尝试几乎不能更为严密地确定生理学的兴奋-格式塔,也不能充分地弄清构成生物整体性的基础的系统-过程。但是,诸如“平衡”,格式塔等一般概念,并非像早先杜里舒所强调的,是一种解释。所需要的是,对这些系统和过程以及决定这些系统和过程的规律作出精确的陈述。目前生物学在何种程度上有可能做到这点,本书的前面已作了论述。第二条反对理由涉及到格式塔理论所假设的生物学和心理学过程中的一般分布类型。苛勒试图用遵循热力学第二定律的平衡态的确立来解释有机体的调整活动。但是,这种概念原则上不适用于活机体,因为活机体不是热力学平衡系统,而是远离真正平衡而保持在稳态中的开放系统。因此,机体论调整理论需要新的原理,而这新原理必定可以从开放系统理论中推导出来。
总之,现代心理学和生物学的发展之间存在着一种惊人的一致。现代心理学教科书,诸如 W.梅茨格(Metzger)的格式塔心理学著作(1941年),可以说,就原理对原理而言,是能够被转译成机体论语言的。我们倾向于认为,一般系统论(pp.199ff.)作为一种调节工具,一方面建立不同领域通用的那些一般原理,另一方面防止不同领域之间无根据的类比,都将是有用的。
5.哲学
我们时代的未来的历史学家会记下这一引人注目的现象:自从第一次世界大战以来,不仅在不同的科学领域中,而且在不同的国家里,都独立地出现了有关自然、精神、生活和社会的类似概念。我们处处发现了相同的主导性的基本概念:表示各个层次上的新特征和新规律的组织概念,内在于实在的动态本质和对立的概念。
一切动态哲学之父是赫拉克利特;他关于“万物皆流”和“对立面的统一”的观点,是世界观最初的、深刻的和神秘的表达。现今,我们试图用物理科学和生物科学的合适语言来表达这种世界观。这种来源于赫拉克利特的思潮,产生了意大利-德国文艺复兴时期一位神秘人物--库萨的卡迪纳尔·尼古拉(Cardinal Nicholasof Cusa)。库萨是最后一位著名的中世纪神秘主义者,现代科学的前驱。他推翻了古代的和中世纪的地球中心说体系,主张宇宙的无限性。因此,他是现代天文学和焦尔达诺·布鲁诺(GiordanoBruno)热诚的哲学先驱。他沉思无限性,由此而创立了开方,这最后导致了莱布尼兹(Leibniz)的微积分的发明。他在物理学、地理学和医学方面的见解,标志着现代科学的黎明和从伽利略(Galileo)延续到我们时代的伟大的理智运动的开端。在库萨关于对立面的统一的学说中,复活了古代哲学的主题思想,使之延续到现代。库萨表述中关于实在-上帝的观念(这个观念可以只用对立面的陈述表示),用现代术语来解释,也是对语言的符号体系最深刻的批判,我们最终在互补概念,同样也必然在现代物理学概念中发现它最微妙的表达。这种智慧的遗产在雅各布·伯梅(JacobBohme)朦胧的神秘主义、莱布尼兹明晰的数学和自然哲学、歌德和荷尔德林(Holderlin)富有诗意的幻想中保持了下来。
歌德不仅是一位诗人,也是一位著名的博物学家,他是形态学——生物形态科学的奠基者。他设想在动物和植物多样性中,好比有大自然艺术家的基本的设计蓝图和创造理念。因此,他认为植物形态的千差万异都是某种理念的原始植物的变异,这种原始植物的基本要素——叶子——是以不同的方式发生变形的。可是,就歌德的世界观而言,仅仅看到这种植根于柏拉图理念学说的“唯心主义形态学”的要素,可能是表面的。在这种理念的形态背后,有着赫拉克利特的动态思想,我们可以在歌德的《Stirb undWerde》(《死与变》)和《Dauer im Wechsel》《常变中的永续》)中看到这种动态思想的表达。由于形态美的背后还存在着实在的矛盾性,这便使我们的思想和行为只能使用符号。因此,“我们思想火焰的腾飞需要借助于形象和图像,”而我们所做的这些毕竟是使用符号。所以,正像歌德对爱克曼(Eckermann)所说的,“某人做的是罐子还是坛子”,这毕竟是无关紧要的。而且,赫拉克利特关于对立面的统一的思想,是充满悲剧性幻想的荷尔德林哲学的核心。正像后来尼采和巴霍芬(Bachofen)所揭示的,他从古希腊文化中预见到内在矛盾,用他自己的心灵反映这些矛盾,而又被这些矛盾所击碎。
通过这些著名的思想先驱,可以追溯我们时代自然哲学之源。这些多种多样的独立的思想源泉汇入共同的思想之流。
哲学的发展先于心理学和生物学的发展。因此,尼古拉·哈特曼在1912年强调系统概念的必要性。那种认为因果性仿佛是许多单个因果链平行地起作用的看法是欠妥的。重要的是相互作用。在一个系统中,各种力互相平衡,因此,它们的共存导致了抵制破坏的相对稳定的结构。同时,每个有限的系统是更高系统的成员,同时它本身包含着更小的系统。这种内含物不只是一种被动的囊状物而是相互依存的。较低序列系统的某些活动在较高系统的整合中起作用。反过来,较高系统的某些活动共同决定着较低系统的活动。生物体现了力的系统最复杂的构型。相互作用在其中是基本的;相互作用使所有部分过程整合为整体,并由系统规律支配这些过程的协同作用。哈特曼在他后来的工作中,发展了关于实在的分层理论。分层理论在不同的领域——无机的、有机的和精神的领域——甚至显示出更高的和更复杂的范畴。
我们叙述了生物学和心理学的新概念是怎样在德语国家中形成的。在非德语国家也同样出现了类似的和独立的发展,这是现代思想史上最引人注目的现象。伍杰说得好,未来的生物学史很可能包括题为“二十世纪初为机体论概念而斗争”的一章。它将叙述这个概念在笛卡儿哲学的影响下是如何被忽视的;机械论形而上学甚至是如何不允许生物学将有机体想象为不同于一大堆微小的坚固粒子的任何东西的;本世纪初最早出现的机体论概念又是如何因不恰当的表述而受挫的,其中,杜里舒只是用超自然的操纵者的概念代替荒谬的无操纵者的机器的概念;最后,为什么最早认真接受机体论概念的,不是生物学家,而是某些哲学家和数学物理学家。
如同杜里舒在德国所做的那样,英国生理学家J.B.S.霍尔丹拒斥生命机器论。他从有机体协调的自我保存看到了生命的本质,认为这种协调的自我保存的活动原则上不可能用物理-化学的术语加以描述。像格式塔概念在德国那样,机体论概念在英国扩延到无生命系统也包括在内的范围。根据劳埃德·摩根(LloydMorgan)的看法,有机体的特征就在于它的各个组成部分特有的性质归因于整体,因此,一旦整体被破坏后,这些部分特有的性质也随之消失。摩根所说的“突现”进化和“合成”进化,与德国文献中的格式塔与总和的术语相对应。因此,每一层次——电子、原子、分子、胶态单位、细胞、组织、器官、多细胞有机体和生物群体——由于突现进化而获得了超出从属系统的新特征。
数学家怀特海(Whitehead)的“有机机械论”,既超越了关于分子盲目活动的概念,也超越了活力论的概念。所有真正的实体是“有机体”,在有机体中,整体的状态影响着从属系统的特性。这个原理具有相当的普遍性,并非活机体所特有。在现代物理学中,原子变成一个有机体。通过物理学概念的转变,科学触及到既非纯粹物理的、也非纯粹生物的方面——它变成对有机体的研究。生物学研究的是较大的有机体,物理学研究的则是较小的有机体。
继霍尔丹学说之后的是斯马茨(Smuts)和迈耶-艾比切(Meyer-Abich)的整体论。按照整体论,生物规律比物理规律更具有普遍性。因此,如果人们能够对生物现象作出数学的描述,那么,特征性的生物参数消去之后,可以得到对生命和非生命现象都适用的简化公式,这个公式与我们所说的物理规律是一致的。可是,目前还没有例子能够实际地证明从生物规律中推导出物理规律(以及从心理规律中推导出生物规律)的“简化演绎”的程序。因此,整体论是一种哲学思辨,就我们现有的知识而言,它几乎得不到任何事实的支持。
俄国的辩证唯物主义一方面来源于黑格尔(Hegel)的哲学,另一方面来源于马克思和恩格斯的经济学理论。它的原理阐述如下:第一,自然界不是许多分离单位的聚集,而是一个有机的整体,这个整体内各个组成部分是紧密相关和相互作用的。第二,自然 界不是处于静止的和不变的状态,而是处于持续不断的运动和进化的状态中。第三,在进化过程中,受自然规律的支配,在从某一组织层次到更高组织层次的转折点上出现了跳跃,量的变化变为质的差别。第四,内在矛盾是自然现象本身辩证地固有的,所以,进化过程是以对立倾向的斗争的形式发生的。
当然,模糊所有这些思潮深刻的意识形态的差别和对比是荒谬的,同时,我们暂不对这些思潮的价值作出评判。但是,这些思潮的基本对抗使“对立面的统一”变得更加明显。从绝对不同的甚至完全相反的出发点,从极不相同的科学研究领域,从唯心主义哲学和唯物主义哲学,在不同的国家和社会环境中,逐渐形成了本质上类似的概念,这表明了这些概念产生的内在必然性。这正意味着这些共同的一般概念本质上是真实的和不可避免的。
6.一般系统论
从我们所做的这些陈述中,浮现出一个惊人的远景,一个迄今未被料想到的世界概念的统一的远景。无论我们研究无生命事物、有机体、精神现象还是社会过程,处处都已逐渐形成了类似的一般原理。那么,这些原理相类似的根源是什么呢?
我们对这个问题的回答,诉诸于科学的一个新领域,我们称之为一般系统论。这是一个逻辑-数学的领域,它的主题内容是表述、推导对各种系统普遍适用的那些原理。“系统”可以被定义为处于相互作用过程中的诸要素的综合体。不论系统的组成要素的性质以及这些要素之间的关系或力的性质是什么,总存在着对诸系统都适用的一般原理。以上提及的所有学科领域是与系统有关的科学,从这一事实出发,我们可以探求不同领域中定律的结构一致性或“逻辑相应性”。
普遍地适用于诸系统的原理,可以用数学语言进行定义。对此,本作者将在下卷中作更详尽的论述。那时,人们会看到,可以从关于系统的一般定义中引伸出诸如整体性与总和、逐渐机械化、集中化、主导部分、等级秩序、个体性、终局性、等终局性等概念;这些概念,迄今人们通常以含糊的、拟人化的或形而上学的方式进行想象,但实际上这些概念乃是系统的形式特征或某些系统状况从逻辑上加以推导的必然结果。
一般系统论具有多方面的意义。首先,我们可以区分现象描述的各个层次。第一个层次只表现为 类比 ,即现象表面的相似性,它们既不与在这些现象中起作用的因素相一致,也不与适用于这些现象的定律相一致。一个例子是 生命影像 ,这在20世纪初的生物学领域中是很流行的,例如,当渗透的“细胞”与有机体相比较时,它们是相像的。第二个层次表现为逻辑的 相应 。这里,现象所包含的因果关系的因素是不同的,但受结构上相同的定律的支配。例如,液体流动和热传导现象都可以在数学上用同一定律表达。当然,尽管物理学家知道并不存在“热流动”,但热传导是以分子运动的传授为基础的。最后,第三个层次是严格意义上的 解释 ,即对存在于个别事例中的条件和力的陈述,以及对由此推出的定律的陈述。类似,在科学上是无价值的。可是,相应,通常提供非常有用的模型,这种以相应为基础的模型方法广泛应用于物理学领域。
因此,一般系统论可以作为一种区别类似与相应的工具,以建立合理的概念模型,使一个领域的定律转换为另一个领域的定律,另一方面,以防止不可靠的、不能允许的类比所得出错误的结论。然而,在那些超出物理-化学规律框架之外的科学中,诸如人口统计学和社会学,以及生物学的广泛领域中,如果选择适当的概念模型,就能阐述出精确的定律。逻辑的相应性是从一般系统的特征中产生的,这就是为什么不同领域中出现结构上相似的原理,并由此导致不同科学领域中产生平行演进的原因。
一般系统论确立了有明确意义的问题。因此,如福尔特拉所说的,可以建立与机械动力学相应的人口统计动力学或人口动力学。最小作用原理出现于完全不同的领域:如力学、物理化学中的勒夏忒列原理(按照普里高津的看法,这个原理也适用于开放系统),电学中的楞次(Lenz)定律,沃特拉的人口理论,等等。再有,张弛振荡(p 141)出现于某些物理系统中,同样也出现于许多生物现象和人口统计现象中。一般周期性理论对于各个领域都是很需要的,由于稳态的存在等等,因此,有必要作出扩展像最小作用、稳定态和周期解(平衡和节律性变化)那样的原理的尝试,在某种意义上,这种尝试对物理学是普遍的,因而对任何类型的系统都可适用。
从逻辑-数学的观点看,一般系统论的地位相似于概率论的地位,概率论本身是纯粹形式化的,但可以应用于完全不同的领域,例如热理论、生物学、实用统计学等等。
在哲学中,一般系统论可以用一般原理的精确系统取代所谓“本体论”或“范畴论”的学说。实际上,N.哈特曼在能以数学形式表述的标题下,阐明了知识和实在的那些真正特征。
在这个意义上,一般系统论可以被认为是通向莱布尼兹梦寐以求的 通用数学 (Mathesis
uniuersalis)--包含各种科学在内的综合的语义系统的一个步骤。也许,可以说在现代动态概念中,系统论能起的作用,相似于亚里士多德逻辑学在古代的作用。对亚里士多德逻辑学来说,分类是基本的方法,因此,关于共相的种属关系的学说,表现为基本的科学研究法。在现代科学中,动态的相互作用是所有领域的基本问题,它的基本原理必将在一般系统论中得到表述。
7.结语
科学的进展并不是一种在智力真空中的运动;相反,它既是历史发展进程的表现,又是历史进程的动力。我们已经看到机械论观点是怎样在所有的文化活动领域中表现出来的。机械论关于严格因果性的基本概念,关于自然事件的累加和随机特征的基本概念,关于实在的终极成分的远离性基本概念,不仅统治了物理学理论,而且支配着生物学的分析、累加和机器理论的观点,支配着传统心理学的原子主义和社会学的“一切人反对一切人的战争状态”的观点。承认生物是机器,承认由技术统治现代世界以及人类的机械化,这只不过是物理学机械论概念的扩充和实际应用。
科学的新近进展表明人类的智力结构发生了总体的变化,这种变化完全可以与人类思想的伟大革命相比。“正如冯·贝塔朗菲曾经认为的,理论生物学在哲学上提出的重要见解,是我们文明史上的第二次哥白尼革命”(蒂姆伯)。事实上,现代科学发展所导致的观念——整体、动态、进入更高级单位的组织——都在生命世界中得到了最有意义的表现。我们可以期望这些智力的发展预示人类度过我们时代可怕的危机(如果这种危机不会导致全部毁灭的话)的新时期的来临。因为,精神上的革命总是先于物质的发展。所以,由17世纪笛卡儿创立的机械论世界的理论概念,是我们时代达到顶峰的生命技术化的先兆。相似地,也许我们可以将新的科学概念看作为未来发展的前兆。荷尔德林的壮丽诗句不仅对于诗人,而且对于每一项创造性工作来说,都是真确的:“勇敢的精神像雷暴雨前翱翔云空的雄鹰,它的腾飞预示着诸神的来临。”
还有最后一个问题,我们必须作出回答。我们在纯科学的层次上,用机体论概念详述了生物学。我们主张,生命现象是可以用精确的定律说明的,虽然我们也许离这个目标的实现还很远。我们强调必须否认任何活力因素在可观察到的事物中的干预(可观察到的事物成为科学研究的唯一题材)。于是就发生了这样的问题:这是否意味着一种苍白惨淡的唯物主义,一种无灵魂和无神的自然界?
让我们看一下对这个问题的最准确的科学回答吧。就总的综合而言,物理学已成为一种世界观,它使人们可能领悟从量子领域中小得难以想象的单位直到大得难以想象的星系的实在。我们之所以能用物理学理论在概念上把握自然界,用技术在实践上控制自然界,是因为我们用逻辑-数学关系之网——我们称之为自然定律——把握了自然现象。这种自然定律的构造达到了前所未有的普遍性和客观性,这是现代物理学的胜利。人们已有可能运用这些定律达到对自然界的技术控制,这种常见的事实表明,这些定律在很大程度上与实在相符。
然而,与这些成就相伴而行的是某种退让。现在物理学与其以前时代的自我断言相对照,已认识到它的任务是在形式关系系统内描述现象。它不再期望把握实在的核心。鉴于早期物理学认为它在微小的坚硬物体中已发现了最终本质,现代物理学的陈述却是不同的。物质被分解为某些振荡过程——但振荡只表示某些量值的周期变化,物质的最终本质仍未被确定。
物理学家并不回答电子实际上“是”什么的问题。他所具有的最透彻的洞见只能陈述称为“电子”的这种实体所特有的规律。同样地,也不能指望生物学家解答生命就其“内在本质”而言可能是什么的问题。即使生物学家具有先进的知识,他也只能更好地陈述表征或适用于我们所面对的活机体现象的规律。
不能进行客观研究的诸因素,不得纳入能够说明可观察的事物的定律。在具有本质区别的层次上存在着企图获得关于实在的直觉知识的形而上学。我们不仅是科学的智者,我们也是人。用重要的符号表达实在的核心,这是神话、诗歌和哲学正试图做的事。
然而,如果我们渴望用简洁的语句把握生命的本质,那么似乎可以在歌德特别喜爱的表达中找到这种语句。《常变中的永续》称得上是一首含意深刻的诗。在赫拉克利特看来,河流似乎是生命的直喻,它的波涛永远变化不止,但它在流动中持续存留,歌德 -
浮士德也给出了这种最深刻的知识。虽然不能注视实在的太阳,但是,他和科学的心灵仍满足于一种保持着生命和思想的无穷无尽的力量的美妙隐喻:
就让太阳留在我的后方!
那穿过岩隙奔腾直下的瀑布,
使我越看越欣喜若狂。
它一叠一叠地翻滚,化为千股,
然后又分作千万道急流奔涌,
向空中喷溅出无数飞沫细珠。
可是从这种飞泉形成的彩虹,
拼成万变之不变是多么悦目,
时而分明,时而消逝在空中,
在它的周围散作空蒙的凉雨。
彩虹反映人类的努力上进。
细心揣摩,你就会更加领悟,
要从多彩的映象省识人生。     
 
必读网(http://www.beduu.com)整理
首页 上一页 共2页
返回书籍页