必读网 - 人生必读的书

TXT下载此书 | 书籍信息


(双击鼠标开启屏幕滚动,鼠标上下控制速度) 返回首页
选择背景色:
浏览字体:[ ]  
字体颜色: 双击鼠标滚屏: (1最慢,10最快)

大爆炸宇宙通史

_3 帕特里克·摩尔(英)
第三章 演化中的宇宙 大爆炸后7亿~90亿年
在前两章的讲述之后,我们到达了宇宙演化史上出现能够实际看到的分立天体的时间点。甚至在最早的恒星出现之前,物质收缩形成星系的过程就已经开始。哈勃太空望远镜的深空图像揭示出大爆炸后7亿年时的星系景象--它们看上去与在我们附近的天体不同。许多都较小,而且有各式各样奇怪而美妙的形状,有些里面还有大质量黑洞。占主导地位的是神秘的类星体,现在知道这种能量源是非常活跃的星系核,其光度等效于几千个银河系。因为它们如此明亮,所以可以从很远的地方看到,也就是可以追溯到宇宙相当年轻的那些日子。
正文 超大质量黑洞
2010-1-28 21:14:48 本章字数:1476
超大质量黑洞
在这些星系的中心,甚至在很早的阶段就存在着数百万太阳质量的超大质量黑洞。就像我们前面提到过的,它们可能直接由坍缩的气体形成,也可能是大质量恒星的残余又吸附了大量的额外物质而形成的。无论如何,这一尺寸的黑洞其引力都十分巨大,能够吸引庞大数量的物质。
看来在星系形成的早期,当恒星刚开始形成时,有大量的尘埃和气体存在。这些物质的存在为黑洞提供了燃料,并向内旋转形成圆盘状。这时,它所发出的光线分成多个束流,当我们沿着其中一束的方向看过去时,就看到了被称作类星体的威力巨大的信标。在宇宙演化的这个早期阶段,这些原始星系之间的碰撞是很平常的。而当两个星系合并时,新的物质被吸入一个或几个黑洞中,类星体发出闪亮。实际上,所有大质量星系,包括我们的银河系,在演化过程中都经历过类星体的阶段。而近来对某些类星体的研究发现,在其他方面它们就是普通星系。当燃料最终耗尽时,星系就稳定下来。
这个在地球轨道上运行的天文台将望远镜指向了一块以前从未引起过任何兴趣的天空。长达100万秒(略长于11天)的极端长时间曝光使得来自最暗
弱天体的光线也能积累到可被探测到的水平,将这块似乎空无一物的天区变成充满成千上万个星系的地方。图中每一个斑点都代表一个背景星系,而不是背景恒星。并且尽管有少量较近的星系看上去完全平常,大多数则是小很多,暗很多,且明显怪很多。即使根据直观印象也能得出一些结论。例如,颜色发红的星系是最远的,因为红移很大。所以我们可以把这些探测到的天体按照大致的演化顺序分类排列。
通过观察这些最早的星系并尝试以上的分析,可以获得对今天星系如何形成的深入认识。我们不再认为每个星系都是相互隔绝地形成的,否则,在超深空照片中,较大的“普通”星系应该少些。根据模拟结果提出的新的图景是:早期的坍缩会导致较小的结构,然后再经过一系列的碰撞合并形成较大的系统。在可观测宇宙最远古的区域里的这些大量的小星系正是这一过程的原料。探测到的这些星系为这一理论增加了砝码。在超深空视野照片中所看到的正是建造我们所熟悉的现代宇宙的砖石。这一进程甚至可能仍在继续,近年来我们已经认识到银河系也是一个吞食同类的巨物,因为天文学家观测到它正在把一些矮星系撕裂。
这些小系统环绕大星系运动,但渐渐地被拉了过来。最终它们的轨道变形到经常穿越大星系的星系盘。而每次穿越都会被大星系夺走气体和尘埃。经过这样的几个回合,小星系彻底丧失了自己,成为更大的系统的一部分。这就是等待银河系最显着的两个伙伴--大小麦哲伦云的命运。
哈勃太空望远镜拍摄的美丽的超深空视野照片,在它的继任者出现之前可能一直是独一无二的。图中那些星系的异常颜色体现出我们所掌握的、本书中心议题的最根本的证据,这就是宇宙确实在膨胀。这众多天体的不同颜色代表着不同的红移。天体越红,看上去就离开我们越快。我们看到的光线在大爆炸后7亿年--宇宙年龄的5%--时就离开了它们。通过对地基望远镜获得的这些星系的谱线位置的分析,已经证实了这一点。
贯穿这一时期,这些结构还是通过自身引力造成的物质收缩来形成,就像在黑暗(或昏暗)时期那样。这当中也包括最后形成银河系的种苗。银河系的大小超过了平均值,但也不是非常特别。它相当于1000亿个太阳的质量,但赶不上邻近的仙女座旋涡星系。本星系群也不是特别突出,其他的星系群要庞大得多。平均在6000万光年处的室女座星系团包括1000多个星系。
正文 我们的星系:银河系
2010-1-28 21:14:50 本章字数:803
我们的星系:银河系
年轻的星系中储备有大量的气体和尘埃,可以转变成恒星。这些星系的光芒主要发自明亮年轻的蓝色恒星,看上去和我们的星系--一个非常正常的旋涡星系很相似。在讨论其他星系之前,有必要详细地了解一下银河系。我们知道它是旋涡状的,其中心距离我们26000光年。整个系统的总直径超过10万光年,看上去像一个双凸透镜(或两个背靠背叠在一起的煎蛋)。沿着这个系统的平面望去,可以看到许多星星几乎排在一条线上,形成了从太古时代起就被称为银河的横跨夜空的壮丽的光带。中心核球(煎蛋蛋黄)的直径约2万光年。平面之外离开星系盘,在我们称之为银晕的地方有巨大密集的球状星团和许多流浪的恒星。
银心不易看到,因为中间有太多遮蔽的物质。但是射电波和X射线则不受阻碍。银河系中心位于人马座的繁星之后,其精确位置是人马座A*(读作人马座A星),是一个很强的射电源。在中心区有盘绕的尘埃云和能量巨大的恒星组成的星团。在很靠近真正的中心的地方有一个260万倍太阳质量的黑洞。其证据来自星表编号为S21、质量是太阳15倍的一颗恒星。长期的跟踪研究发现它在围绕着一个中心天体以15.2年的周期运动。它离中心天体最近的距离只有17光时(光速×小时),已经贴近黑洞“事件边际”的边缘。在那个界限之内,任何东西都无法逃出。它绕行的速度是惊人的每秒5000千米。从它运动的方式可以推断出中心天体的质量。这一质量是如此巨大而又局限在如此狭小的体积内,除了黑洞,别无可能。
星系在旋转。太阳大约要用2.25亿年转完一周。这一周期通常叫做宇宙年。在一个宇宙年前,地球上最高级的生命形式是两栖动物,甚至恐龙都还没有出现。设想一下一个宇宙年之后的地球是什么样子将是十分有趣的。我们在离星系主平面不远处运动,并刚刚离开其中一条旋臂--猎户臂。所以我们现在位于一个相对空旷的区域。
正文 旋涡星系
2010-1-28 21:14:52 本章字数:629
旋涡星系
许多星系是螺旋状的,除了唯一一个令人困惑的反例之外,所有的旋臂都由于星系的旋转而呈现拖尾状。现在认为旋臂是由回荡在系统内的压力波造成的,里面的某些区域里星际物质的密度比平均值要高,这将引发恒星的形成。最容易看到的恒星质量很大,以宇宙学的标准来看,在它最终爆炸成超新星前的寿命是较短的。但它们明亮的光芒使得旋臂变得明显。当压力波扫过后,激烈的恒星形成过程停顿了,这个旋臂变得不那么突出。而扫荡的压力波又会造就一条新的旋臂。如果这种图景是正确的,那么在几千万年的时间里,我们的银河系仍会有旋臂,只是这些旋臂是由另外的恒星构成的。
支配星系旋臂的物理学规律可用一个日常的问题来类比,就是交通拥堵。想象一下M25--伦敦的环路--上的交通,所有汽车都以几乎相同的速度前进,但是如果道路较挤,一辆车稍微减速就会让它后面的车排起队来。这正是聚集在环绕星系核心的旋臂上的气体或尘埃的情况。每辆具体的汽车只会在有限的时段里成为拥堵的一员,而之后仍会在环路上继续前行。但拥堵会持续下去,只是换成了后面跟上来的车辆。
通过多普勒效应,我们已经测量出很多星系的旋转。如果一个旋涡星系正在旋转,那么在一侧的所有物质将朝向我们运动,而另一侧的所有物质将远离我们(当然要排除星系自身的整体运动)。这种运动将表现在谱线的位置上,所以可以据此测量出旋转的速率。而星系旋转的一个奇怪的特征还具有更深刻的意义。
正文 神秘的暗物质
2010-1-28 21:14:56 本章字数:1012
神秘的暗物质
在我们太阳系中,行星绕日公转的速度随着它们到太阳距离的增加而减少,因为离太阳越远,引力越弱。顺理成章地,同样的规律也应该体现在旋转的星系上。靠近中心的星的运动应该比远离中心的星的运动快得多。然而天文学家惊奇地发现,不是这么回事。远处恒星的宇宙年比预计的要短,所以旋臂不会很快地卷绕起来。星系的情况似乎介于太阳系和一个刚体之间。刚体的情况像一个旋转的自行车轮子,在车轴附近的一块泥点的移动比在车圈上的移动慢得多,但两者用同样的时间走完一周。
如果星系里的恒星像行星环绕太阳那样简单地围绕着一个中心质量旋转,就无法解释这种奇怪的现象。唯一可能的答案是这个系统的质量并不是集中在中心或中心附近,而是分布在整个星系盘和星系的外侧。最有可能的解释是存在分布在整个星系晕内的暗物质。暗物质完全不可见,只有万有引力才能泄露它们的所在。
暗物质是否就是普通的物质?比如大量非常暗弱的低质量恒星,除非它们按照宇宙标准来看聚集得很近,否则我们将无法看到。当然恒星的数量是很多的,最新的估计是在可视宇宙中恒星的总数达到7×1022个,但似乎它们的总质量也无法与暗物质总量相匹配。
这些质量是否有可能被禁锢在黑洞中了?我们可以计算现已掌握的这类质量,发现还是远远对不上。史蒂芬·霍金曾预言存在地球质量级别的黑洞,但还从未发现过。曾经看起来更有希望的一种方案涉及中微子--没有电荷的快速粒子,不易检测但数量极其丰富,在驱动恒星的反应中大量产生。每秒钟有数千个中微子穿过我们的身体,如果中微子具有一点质量,那么就可以为暗物质提供一种解释。与几年前相比,现在我们对此有了更深入的了解:尽管中微子不是完全没有质量,但它的质量远不够解决这一问题。
我们还剩下两种选择。一是暗物质可能是由现在还未知的基本粒子构成,每个质量很小,但数量足够多,可以解释这种差异。这种假设的粒子叫做弱相互作用重粒子,即WIMP。而粒子物理学已经对它们应该是什么样子给出了具体的预言。另一种解释是暗物质由普通物质构成,以暗弱而大质量天体的形式存在,例如行星,或棕矮星一类的小恒星。对这类称为大质量致密晕族天体,即MACHO的探测已经在进行,据信它们潜伏在大质量星系的星系晕中。探测已经取得了一些积极的结果,现在我们在等待发现一个经过的WIMP。然而事情并未就此完结。
正文 为什么有暗能量
2010-1-28 21:14:58 本章字数:979
为什么有暗能量
根据最新的估计,可视宇宙--即我们可以看到的所有的东西:星系,恒星,行星等--仅占宇宙中能量的4%,另有23%是以暗物质的形式存在。而剩余的73%要归于所谓的“暗能量”。
直到宇宙史上的这个阶段--大爆炸后约70亿年时,在引力的影响下膨胀变慢了。引力是唯一能在天文距离上造成显着差别的力,而且这是一种将物质拉到一起的吸引力。我们或许可以预料,引力的强度将决定宇宙的终极命运。
在我们讨论的这个时代,宇宙在膨胀。而且直到今天它仍在膨胀。但是这个膨胀会永远持续下去吗?还是说在至少800亿年后星系会掉转头来再次冲到一起形成一次大坍塌?所有这些都取决于宇宙中物质的平均密度,用希腊字母 表示。如果 大于1,引力占据上风,在时间终结之时会有一次大坍塌;如果 等于1,那么膨胀会逐渐减慢但永远不会完全停止,这被称为一个平坦的宇宙。如果 低于这个临界值,膨胀将变慢,但将一直持续下去。在讨论暴胀时说过,我们掌握的证据似乎说明宇宙是平坦的。但是对一种特殊类型的超新星:Ia型超新星的观测提醒我们,事情可能复杂得多。
让我们通过这些超新星回顾一下位于大爆炸和今天的中间点的关键时代。为什么这种类型的爆炸如此特别?因为这些爆炸的极大光度即内禀亮度都是相同的,所以可以作为标准烛光使用,让我们能够测量距离。我们将超新星爆炸时在天空中的视亮度和它的内禀亮度相比较,其差值就表示距离有多远。看起来更亮的超新星一定是距离我们更近。
为什么这些超新星都具有相同的内禀亮度?据认为这类超新星产生于一颗普通恒星的白矮星伴星的彻底毁灭。较小而致密的矮星从它的较大的伙伴那里吸积了过多的物质,最终它自身变得不稳定。这颗矮星在一次巨大的热核爆炸中把自己炸成了碎片。由于这种爆炸总是发生在同样的临界质量下,爆炸的光度在每种情况下都是一样的。
我们有两种方法计算包含超新星的星系的距离:通过谱线的红移和超新星的峰值光度。但在什么地方出了问题,使得超新星看上去比它们本应具有的亮度要暗,所以似乎比预计的遥远。这也正是天文学家们期待的最后一件事情。只有一种可能的解释,现在宇宙膨胀的速度一定比以前要快。宇宙的膨胀正在加速而非减速,这种使宇宙膨胀加速的能量我们称之为暗能量。
正文 第五种力
2010-1-28 21:15:00 本章字数:605
第五种力
这是怎么回事?在整个物理学史上,有四种力被认为是足以解释物质之间的所有可能的相互作用:电磁力(造成异性电荷之间的吸引力)、强核力(将原子核约束在一起)、弱核力(造成放射性衰变)和引力(在整个宇宙范围内起作用的吸引力)。引力是四种力中最弱的,但在天文学家们关心的领域里它是最重要的。因为这是唯一在很远的距离上仍起作用的力(虽然电磁力也能产生长程作用,但因为物质平均起来是电中性的,所以这种力被抵消了)。而一个加速中的宇宙需要一种先前未曾显示出效应的第五种力。
对于起这种作用的力已经有了许多理论性的假设,基本上大多数都是才一提出即遭抛弃。它把我们带入了奇异的真空力和虚粒子的世界。我们自然而然地把真空想象成不存在任何物质的地方,但是量子物理学告诉我们,这种想法过于简单了。任何真空都充满了沸腾起伏的大量的“虚粒子”。它们总是以粒子和反粒子的形式成对出现。这些带有相反电荷的虚粒子在互相碰撞湮灭之前只能存在不到10-43秒的短暂时间。这一过程可以描述为真空首先借来用以产生粒子的能量,然后在宇宙的其他部分觉察到之前,通过湮灭将能量返还。但在虚粒子短暂的存在期内对其周围却会产生影响。实际上在实验室中发现在某些情况下它们会产生斥力。这可能正是我们寻找的东西。而且,真空的体积越大,力就越强。所以我们预计随着宇宙的膨胀力会变大--恰如我们观测到的。
正文 宇宙剪切
2010-1-28 21:15:02 本章字数:939
宇宙剪切
暗能量存在的进一步证据来自意想不到的一个方面。通过观察几十万个星爱因斯坦在黑板前。1923年12月6日系的形状,天文学家能够测量出自光线从每个星系发出后宇宙的膨胀。这种方于荷兰莱顿。法被叫做宇宙剪切,它依赖于光线路经质量时产生的弯曲。这种效应最壮观的例子是爱因斯坦环。来自遥远星系的光在从近邻系统的旁边经过时被严重扭曲,扩散成一个环形。近邻的系统位于中心。星系的图像也常常被扭曲和拉伸成弧状。除了这些极端的例子,我们看到的每个星系的图像都存在某种程度的畸变,畸变的大小反映出光线在到达观测者之前经过的质量总量。对大多数星系而言这种效应很微弱,只表现为星系在天空中位置上的小小偏移。这就存在一个问题,我们只能看到星系发生偏移后的景象,而要测量出途经的质量及计算出膨胀的大小,我们需要与一个从星系发出后未经任何畸变的光线作比较。对任何特定的星系,这都是不可能的。然而通过天文学家设计的对庞大数量星系的巡查,可以对很多星系作统计平均来提取出这类信息。其结论是明白无误的:光线从星系到我们之间所走过的路径需要用一个加速的膨胀来解释。
不过这里又冒出一个漏洞。在发现宇宙加速膨胀之前,粒子物理学家们找到了一大堆理由来解释由他们的许多理论所预言的这种效应为什么在宇宙中没有表现出来。实际上我们处于这样一种境地,就是能够解释为什么要么根本没有互斥力,要么存在一种极强的排斥效应。不幸的是,我们观测到的只是一种非常弱的力(尽管在宇宙范围内累积起来这种效应非常显着),而且与预言差距甚大。实际上,天文观测结果与最好的理论模型之间的差别高达10120倍。这是有史以来在科学上理论和实验之间最大的误差。但是,这就是我们已知的最佳解释。
而情况可能更为复杂。我们曾假设互斥力是不随时间变化的,这个假设只是出于不要把事情弄复杂的愿望,而无其他确实的理由。(要知道科学家们常常引用奥卡姆的剃刀原则:当其他方面都相同时,最简单的方案就是正确的方案。)有些宇宙学家则相信,造成加速的力的强度的确随时间变化。
这些问题即将开始解决。今后20年中的进一步观测已经计划好。不过公平地说,在很大程度上我们还在黑暗中摸索。
正文 章序
2010-1-28 21:15:04 本章字数:501
第四章 恒星与行星 大爆炸后90亿~92亿年
在前面的章节中,我们看到宇宙被第一代恒星所点亮,以及星系的形成。现在,当大爆炸过去90亿年时,宇宙看上去很像我们现在所见到的周围的情况,星系中充满了第二代恒星。现在到了仔细谈论恒星演化的时候了。我们已经对第一代恒星作了一些介绍,但对它们实际的形成过程一带而过,因为当时关注那些能够延展到整个宇宙间的效应。我们知道它们会在耀眼的闪光中结束自己短暂的生命,它们的超新星爆炸将重元素撒向四方。另外,还有一个极为重要的效应,爆炸形成的冲击波将激发新恒星在周围气体云中的形成。
很长时间里类星体都是最显着的天体。它们中心的黑洞吞噬着其所能够得到的巨量的气体和尘埃,释放出庞大的能量。当这些尘埃和气体消耗殆尽后,类星体暗淡下去,宇宙里剩下大量的“正常”星系。50亿年前,气体转化成恒星的速率加快了,宇宙变得更加明亮。后来,40亿到50亿年期间,燃料开始耗尽,垂死的恒星超过了正在诞生的恒星。同时,就在这一时段,在一个不起眼的旋涡星系中,我们的太阳开始形成。下面让我们仔细地探查一下恒星形成的过程。
正文 恒星的诞生
2010-1-28 21:15:05 本章字数:1566
恒星的诞生
恒星在星系中的形成并不是均匀地发生的,周围物质的条件会对收缩产生影响。像我们自己的星系的旋臂就是一个很好的例子。对任何旋涡星系的光学照片一眼看去就能发现,旋臂上的恒星趋向于蓝色,而核球处的则呈黄色。以宇宙标准来看,旋臂上的炽热大质量蓝星寿命是较短的,只能维持几千万年。这意味着无论我们在何处看到了蓝色恒星,就可以确定这片区域内的恒星是在相对较近的时期内形成的。所以可以得出结论,在旋涡星系中恒星的形成集中在旋臂上。
包括太阳在内的所有恒星都是在巨大的恒星孕育区内形成的,我们称之为星云,可看作是气体和尘埃的仓库。在星云之内,充满宇宙其他地方的强烈辐射被挡在外面,故而物质能够冷却到非常低的温度,而如何达到这点对于整个恒星形成过程是非常关键的。最初,冷却是由于氢分子能够向外辐射出能量,能量的流失冷却了云气,温度降了下来。其后这项工作由碳或氧原子更加高效地完成了。在这一气体区域中,由引力作用造成的收缩与粒子的随机运动相对抗,如果这些粒子运动很快,就可以克服引力带来的紧缩,这个气团就永远不会收缩到形成恒星的程度。对恒星生成区的现代观测表明,这是一个持续进行的过程,气团不断地形成和消散着。
不过请记住,粒子的速度由温度决定。温度越低,粒子运动得就越慢。如果气体能足够冷却,引力就会赢得这场较量,冷却的气体团会趋于收缩。
一旦收缩达到某一程度就不可能逆转,一个原恒星的核心就会形成。这样的核心包含大量的、天文学家称之为“尘埃”的小粒子。它们像沙粒一般大小,主要是碳和硅的化合物。正是这些尘埃使得对恒星形成的研究非常困难,尤其是在光学波段。因为可见光几乎完全被尘埃所阻挡。对于稍热的尘埃区域,红外观测非常有用。但是,在恒星形成的早期阶段,温度可能低至10K,这时甚至红外波也无能为力。要观测这种宇宙间最冷的地方,我们必须转到亚毫米波。
星云内的温度是如此之低,以至气体凝固在尘埃上。气体主要是氢,也有简单的化合物,例如一氧化碳。每类分子都形成一个冰层。不过最近的研究表明这种层次结构可能过于简化了,冰是由不同分子混合而成。
气体在很低的温度下运动很慢,再加上难以想象的低密度,分子之间的碰撞相当稀少,即便发生,能量也很低。值得注意的是,天文学家所称的“比较致密的云团”,若是在地球上的实验室中我们会认为那是极好的真空。所以,相对只有很少的化学反应发生。
而当分子凝结在尘埃颗粒的表面后,情况就大不相同。分子被紧靠在一起,而且有人猜测分子或原子(特别是像氢一样的轻原子)可能会自然而然地沿着颗粒表面四处移动。这样当分子相遇时,化学反应就会迅速发生。所以包含十个甚至更多原子的相当复杂的分子就可以构成。但所有这些对天文学家而言是不可见的。这个过程很重要,因为这意味着复杂分子的产生是恒星形成过程的自然结果,而当行星从剩余的残块中产生时,这些物质已经存在了。
与此同时,收缩还在继续,中央核心的温度也持续地升高。这一阶段,气团的尺度有几个光日,是我们太阳系大小的几十倍。最后,密度大到氢原子能够以足够的能量碰撞生成氦,在相对黑暗的气团块的深处,恒星已经点亮。不过这时还无法看见它,因为被四周的尘埃遮蔽着。
这种情况一发生,周围的气体尘埃团块就迅速被加热,变成了我们所称的“热核心”。这有些名不副实,所谓的热不过是300K,就像在9月份Selsey地区(作者帕特里克位于英格兰南部西苏塞克斯的家)的温度。不过冰已经溶化,并将新形成的化合物释放到气体中。在那里形成了复杂分子的混合浆液,这能够被对亚毫米波敏感的望远镜探测到。这一阶段持续不超过1万年,以宇宙的标准看仅是一瞬间。
正文 生命的化学
2010-1-28 21:15:07 本章字数:1053
生命的化学
在这些温热的区域内,目前已探测到100多种分子,许多因出现在我们地球上的生命中而被人熟知,例如甲醇和乙醇。甚至还有希望探测到一些基本的氨基酸,这是构成所有蛋白质进而组成我们所知晓的所有生命的基础。如果复杂化合物是伴随恒星产生而自然形成的,并保持在形成行星系统的物质中,那么就为更加复杂的生命化学提供了一个跳跃的高起点。
另外还有其他次要的证据证明,构成地球上生命的化学物质是在太空中开始它们的存在的。就我们所知,地球和其他行星上的生命都完全基于一种原子:碳。每个碳原子能和类型广泛的其他分子形成至多4个稳定的键,而正好能与4个分子结合成键的能力带来了一种叫做手性的属性。没有其他的分子具备如此的灵活性。硅比较接近,但是除了在科幻小说中,其他地方还没有发现任何基于硅的生物存在的证据。
想象一下碳原子和4个不同类型的分子的结合,其排列有两种可能性,每个都是另一个的镜像,分别称为“左手”和“右手”形式的。它们两个都有同样的分子式,并包括相同的5个单元部分。除此之外,这两种排列的物理和化学属性有稍许差别。所有简单的化学过程都会产生同样数量的左手性和右手性分子。
然而,那些在生命体中进行的复杂的化学过程的确具有选择性。引人注目的是,我们所看到的生命都做出了同样的选择--所有地球上的生物都只使用左手性的分子。为什么会这样?如何从一个两方相等的混合体中形成仅由左手性分子构成的生命?在孕育恒星的星云中,被尘埃所散射的光线由于圆偏振的特性有可能会破坏右手性分子而保留下左手性分子不受损伤。这种有利于左手性分子的模式在恒星开始形成时可能就已决定了。
关于在原恒星内保留的物质的情况先介绍到这里,在探讨行星形成时我们会再次提及。新诞生的恒星自身情况如何?激烈变化而不稳定的雏星依旧包藏在尘埃和气体中,向外发出强大的恒星风。星风由从恒星表面吹出的粒子组成,这阻止了其他物质继续向内收缩。从恒星的极区也可能发出强大的喷流,会清除掉周围大部分的星云物质。收缩开始100万年后,到达了恒星演化的金牛座T型星阶段,恒星在继续紧缩并不规则地闪耀。一个物质构成的圆盘围绕着恒星,从新恒星附近延伸到几百个天文单位远。在接下来的1000万年里,围绕恒星的云团剩余部分被逐渐扫清,只留下圆盘。其中一个最好的实例是一颗很靠南的星:绘架座 。使用一种叫做日冕仪的特殊仪器,挡住恒星自身的明亮光芒,就可以很容易地观测到它的圆盘。
正文 中年的恒星
2010-1-28 21:15:09 本章字数:706
中年的恒星
到这时恒星已经停止收缩,进入所谓主星序上的稳定的中年阶段。换句话说,核心的反应可以提供足够的能量抗衡引力向内的拉力,支撑恒星的外层。恒星被炽热气体的压力(或者推力,如果愿意这么叫的话)和核心产生的辐射所支赫兹普龙-罗素图将光度表示为温度持。恒星如此巨大,一个单独的光子--携带光能量的粒子--要从核心逃出需要花费很长的时间,对太阳而言需要100万年。这个过程通过自然的热平衡实现自动调节。如果恒星在引力作用下收缩,那么核心的温度就会升高,核反应就进行得更加迅速,就会产生更多的能量,强迫恒星扩张到原来的大小。平衡已经达到,重力和压力互相抵消,恒星可以自在地停留在主星序中达几十亿年。
我们从恒星在巨大的星云中形成开始,再集中描述了一颗独立恒星的形成,这可能会造成某种误导。每个活跃的恒星生成区域会同时产生很多恒星,而大多数在这种条件下形成的恒星将作为星团的一员开始它的生命。一个很好的例子是在猎户座大星云这个离我们最近的大型恒星生成区中,4颗明亮的年轻恒星组成的四重星团。多数类日恒星会组成双星或多星系统,两颗或多颗恒星互相靠得很近,最终进入环绕对方的轨道。这样的系统可能是不稳定的。三星系统通常--但不总是--会通过引力作用把质量最小的成员甩出去,这个弹出速度常常很高。在星团中也会发生类似的过程:恒星会以高速被抛出。而当以高速离开时,它们也带走了引力能。这种能量损失令星团中余下的恒星在其邻居引力的拉力下束缚得更紧,直到形成一个稳定的星团。尽管存在上述进程,通常还是会造就某类多重恒星系统。像我们太阳这样独立的状态是很少的不寻常的情况。
正文 太阳系的形成
2010-1-28 21:15:11 本章字数:2080
太阳系的形成
围绕着原始太阳,剩余物质形成扁平旋转的圆盘。物质变成扁平形状的事实解释了为什么行星的轨道倾角如此地接近。相对于地球轨道,水星的倾角仅为7度,而所有其他大行星的倾角均小于4度。这也解释了为什么行星在轨道上以和地球相同的方向运转。如果从太阳极区的上面看去,所有行星在以同一方向绕转。
甚至小行星以及柯伊伯带成员(新近发现的位于太阳系外侧深处的小天体群)也遵循大部分规则。没有小行星或者柯伊伯带天体在“错误”的方向上绕行。而最早发现的100颗小行星中仅有4颗的轨道倾角大于20度。彗星则不同,它们质量很低,易受行星摄动的影响,所以其轨道偏心率和倾角的变化范围很大。而包括哈雷彗星在内的长周期彗星是逆行的,即它们的绕行方向与行星相反,就像在交通环路上逆行的一辆汽车。
研究人员已经建立了复杂的模型,来说明观测到的围绕年轻恒星的圆盘是如何形成太阳系的。在离主星较近的地方,氢和其他较轻的气体被恒星风吹走,形成较小、岩质的行星。在太阳系,这类行星包括水星、金星、地球和火星,以及稍远一点的位于火星和木星轨道之间的小行星带。这里由于木星引力牵引的破坏作用,无法形成大的行星。
再远一点的情况则有所不同。较轻的气体没有被驱逐开,一旦有一个行星核形成,它就会收集这些气体成为巨大的大气层,从而变成一颗巨型的气态行星。在我们太阳系中木星和土星无疑是最好的例子。这些巨行星的视表面实际上就是它们大气层的顶端。这也适用于小些的大行星天王星和海王星。
再向外,我们来到了被小得多的天体占据的区域,这里物质较为稀少,因此此处形成的天体的大小无法达到能够吸住明显大气的临界质量。在太阳系的边缘有柯伊伯带,冥王星是其中最有名的成员,尽管它的直径2320千米比月球还小。除冥王星之外的第一个柯伊伯带天体是在1992年发现的,目前已经知道有数百个。现在冥王星被认为是这类天体中最大的一个,而非真正的大行星。离太阳更远的地方也有零星的环绕太阳的天体。在这片昏暗的地方,至少有两个天体--Quaoar和Sedna的大小与冥王星相当。
以上这些概况基本正确,但故事并未到此为止。当气体巨行星在圆盘中部(就像木星在太阳系中的位置)形成后,物质会被行星所扫清,从而在圆盘中形成空隙。我们可以观察到正在进行的这种过程。在围绕一些年轻恒星的圆盘中已经探测到了空隙。在这种情况下,行星和圆盘之间产生一种竞争,行星的引力将物质从圆盘中吸出,累积到行星身上;而圆盘则把物质向回拉。净效应是行星受到阻尼力进而损失能量,并向内侧朝着中心星盘旋过去。
一旦一颗巨行星开始向内侧移动就很难停止。要创造一种理论既允许这些行星移动到正在形成的太阳系的内侧,又防止它们落入到太阳之中的残酷结局,是一个巨大的挑战。有人提出在某些情况下这正是曾经发生的事情,而我们只是看到了在已经形成并向内侧运动直至毁灭的一长串行星中的最近的几个。但有希望的是,最近的研究已经表明巨行星最终有可能战胜圆盘,捕获周围所有的物质而避免进一步的拖曳。这时转移就会停止,巨行星找到了永久的归宿。
我们的太阳系似乎已经逃离了被一颗大行星犁过圆盘内侧造成的混乱时期,但这并不意味着所有东西从一开始就都是稳定的。也许一个后继的木星大小的行星会形成并向内侧运动,掉入太阳之中并毁灭。不论这些行星是否存在,最终都会形成两个大的物质团块,它们大到其引力足以捕获氢气,而两个团块将迅速增大质量形成木星和土星(土星最明显的特征:土星环,只可能在最近100万年前后生成,可能是因为一颗卫星在一次猛烈的撞击中破碎。因为固有的不稳定,它们只能再维持100万年。我们能够欣赏到这样的美景的确十分幸运)。
在原土星附近,同时还会有另两个团块从圆盘中凝结出来。它们小很多,所以虽然能够捕获气体,但速度要慢得多。天王星和海王星两颗大行星将从这些团块中形成。它们刚好在区分岩质行星和气态行星的临界质量之上,最初这些行星距离太阳要比现在近得多。但在木星引力以及与圆盘的相互作用的共同影响下它们逐渐向外移动到现在的位置上。这产生了戏剧般的效果。圆盘外所剩余的大部分物质过于寒冷又不足以聚集成行星大小的团块,又因为过于靠近天王星或海王星而被抛出了它稳定的轨道。它们大部分终老在太阳系最为遥远的地方,现在我们称之为奥尔特云。这是离最近的恒星都相当远的储存有巨量物质的地方,而且远离行星破坏性的引力效应的影响。
偶尔地,奥尔特云内的物质会被奥尔特云天体自己的相互作用或一颗经过的恒星所扰动,被投入了内太阳系。于是我们看到了流浪者般的彗星,在太阳的照耀下挥发出它们的冰态物质。这类事情现在比较少见,但在我们的故事正在讲述的这个时代,由于天王星和海王星对物质向内的牵引,这种现象经常发生。从月球上环形山的记录可以发现这个“大轰炸”的踪迹,显示出内太阳系曾经被大量小天体撞击。它们亦曾撞击过地球,但其痕迹早已被掩盖住了。
正文 今日太阳系
2010-1-28 21:15:13 本章字数:1190
今日太阳系
最不可能的事就是我们的太阳系是独特的,但它确实是相当不平常。所以让我们再仔细地考察一下。除了行星和小行星大小的天体,还有被称作“脏雪球”的彗星。彗星真正实在的部分是它的核,由混有碎砾的冰雪构成。当彗星靠近太阳时,冰蒸发形成彗头,通常还带有一条长尾巴或几条尾巴。也会有尘埃粒子--实际上是彗星碎片--闯入地球上层大气时在海拔65千米高处燃烧形成流星。
大些的天体可能会完整掉落地面形成撞击坑,这就是陨星。应该注意陨星并不简简单单地等同于大的流星。这两类天体相当不同。陨星是从小行星带被逐出的天体,与彗星没有直接联系。
行星围绕太阳运动的轨道与一个圆形差不多,而大多数彗星则在一个非常偏心的轨道上运动。行星公转周期的范围从水星的68天到海王星的接近165年。正如我们看到的,行星是在环绕年轻太阳的扁平物质圆盘中形成的,所以它们的轨道倾角都很接近。这也适用于柯伊伯带天体和彗星的情况。
最着名的彗星当然就是哈雷彗星,它将于2061年再次回归。现在它过于暗淡无法看到,但无疑在下一次过近日点(距离太阳最近的位置)之前很早就会被找到。偶尔能够看到的超明亮的彗星周期要长得多,有些显然能够亮到产生影子的程度,尽管我们这代人还没有看到。最后,太阳系中还包含大量的行星际尘埃。
在4个内行星中,地球和金星的个头相似。尽管在大小和质量上像孪生子,但它们是完全不同的。金星有一个主要由二氧化碳构成的非常浓密的大气层,在云朵中饱含硫酸,它的表面温度有500℃。地球类型的生命看来完全不可能存在。最里面的行星--水星则过小,无法保持住可以观测到的大气。在地球轨道之外是火星,已经有很多宇宙飞船被发送到那里,而且已经有计划发射载人飞船,尽管这还是相当遥远的未来的事情。
很明显,那些巨行星和较小的内行星完全不同。它们在离太阳较远的距离上形成,故而得以保留较轻的气体--最明显的是氢。木星和土星确定具有一个高温的硅酸盐的核,并被一层液氢所包围,在其上是我们看到的大气。天王星和海王星则不同。它们更适于用冰巨行星而非气态巨行星来描述。木星质量比其他行星的质量总和还大,所以有一种说法叫做太阳系只不过是由太阳、木星和各式各样的混杂的碎片组成。
在行星的卫星中,我们的月亮比较独特。因为它是唯一由较小的行星所拥有的大卫星。其余的,木星有4颗大的卫星和很多较小的卫星。土星有一颗大的随从--土卫六提坦,和许多中等和小型的卫星。天王星有5颗普通大小的卫星,海王星有海卫一(Triton)和一群小卫星。所有卫星中,只它有提坦有较稠密的大气。火星有两个小月亮,火卫一(Phobos)和火卫二(Deimos),是它很久以前捕获的游离的小行星。大行星中只有水星和金星是宇宙中的独行侠。
正文 岩质行星
2010-1-28 21:15:15 本章字数:846
岩质行星
如果气态巨行星向内侧的迁移是很平常的话,我们探测到岩质的类地行星的机会将大大减少。即使它们在某个太阳系的历史早期形成,也很容易因一个木星大小的行星从附近经过而被带离轨道或者破坏掉。地球的存在似乎取决于木星保持在了它所形成的位置上,其原因尚不清楚。实际上在我们写这本书时,在大多数探测到的太阳系中,在我们预计存在岩质“地球”的位置上是一个气态巨行星。应当承认我们的技术有利于探测离恒星较近的大型行星。而进一步观测可能说明我们的太阳系终究一点也不特殊。这是一个基础问题,我们在接下来的10年中将有能力解答这一问题,直接寻找其他“地球”的任务已经在计划中。
有些时候观测者从地球上可以幸运地看到一颗行星从它所环绕的恒星前面横穿而过。在我们自己的太阳系中可以看到水星凌日和更为罕见的金星凌日。最近一次金星凌日发生在2004年,下一次在2012年。在此后要经过一个多世纪才会发生另一组2次凌日。那些太阳系外行星所绕转的恒星都很遥远,我们无法看出视面。所以当行星从恒星前经过时,它会将恒星的光部分地遮挡住,这样我们所观察到的是恒星的亮度略微变暗。这种方法可以实现大尺度的巡查,每晚可以观测成千上万颗星。而亮度上任何可疑的小下降都会被跟踪。这类天文观测将不再纯粹是职业天文学家的工作,这种行星环绕恒星的迹象也能被业余天文学家捕捉到。实际上令人兴奋的是,业余天文学家们已经因为共同发现了一些太阳系外行星而建立了声誉。
现在我们已经知道了170多个环绕其他恒星的太阳系外行星,几乎所有都是通过各种间接方法发现的。其中最成功的方法涉及探测行星的母恒星而非行星自身。尽管就像在我们太阳系中那样,太阳包含了多于99%的总质量,中央恒星的质量比行星大得多,但行星对恒星的引力作用仍会产生效应,使恒星在空间中的运动发生摇摆。这个摇摆虽极为微小,但通过仔细的观测仍能测量出来。通过这种方式可以确定行星的存在。而行星的质量越大,摇摆就越大。
正文 暗棕矮星
2010-1-28 21:15:16 本章字数:716
暗棕矮星
即便最冷的棕矮星也和一颗行星有本质的区别。一颗真正的恒星的质量必须至少为太阳的8%,即木星质量的75倍。低于此值则无法引发核反应,因为核心的温度不够高。由于棕矮星如此暗淡不易发现,因此直到1995年才作出了第一个证认。但现在已经确认了许多。大部分都与普通恒星相关联,可能因为这比孤立的矮星更容易被发现。现在已知最暗的棕矮星是Gliese570D,距离19光年。它的表面温度仅为480℃,只比日常用的炉子的温度略高。它环绕一个三合星系统运动,其直径大致与木星相当,但质量要大50倍。过重的质量使之难以被归类为行星;另一方面,它也无法被归于真正的恒星类,因为在大气中发现了锂的踪迹,而锂是无法在普通恒星的温度下存在的,它会被分解。矮星至少会发光,尽管很微弱。而行星则完全依赖于反射其主恒星的光芒。
有一族孤立的棕矮星不与任何恒星相关联,它们可能数量众多,但其起源尚存争议。这些孤立的天体也曾被称为“流浪行星”,经由引力作用被抛出了它们所形成于其中的系统,但似乎这种方式并不能产生所需的足够数量。
持续增长的太阳系外行星的清单,使我们愈发确信类地行星在宇宙星系中是很平常的,至少在单恒星附近是这样。对于双星系统,一颗小的行星难于维持很长时间不被抛出去,然而我们至少知道一个例外,就是在一个三合星系统中探测到了一颗大型行星在围绕着一颗类日恒星运动。
这些奇特而美妙的行星系统世界是多么地迷人,而我们显然对一种特定类型的太阳系--包含一颗小型岩质而湿润的行星的太阳系含有特别的兴趣。现在让我们把焦点集中到新近形成的我们自己的行星--地球--上。
正文 章序
2010-1-28 21:15:18 本章字数:234
第五章 生命的诞生 大爆炸后92亿年到现在
大约在46亿年前,地球诞生了,此时它处于熔融状态。在它的表面还没冷却下来的时候,发生了一件猛烈的事件,月球因之而生。目前被广泛接受的理论认为,这是源起于一次超级大碰撞:一个大小很可能与火星相似的星体和地球的碰撞。两个星球并合在了一起,四散的碎片残骸形成了月球。月球的密度比地球低的事实表明,这两个天体的实际核心并没有卷入到月球形成的过程中去,而是合并成了地球现在的核心。
正文 月球的角色
2010-1-28 21:15:20 本章字数:941
月球的角色
我们的月亮看上去是独一无二的,而且在地球生命的演化过程中扮演着举足轻重的角色。月球使得地球的自转轴倾角(现在是23.5度)稳定下来,使它的变化不超过1度。如果没有月亮,这个倾角将发生显着改变,地球上的气候环境也将大不一样。与没有类似的天然卫星的火星(它的两颗卫星:福博斯和德莫斯都太小了,它们的影响几乎可以忽略不计)相比,由于没有这种稳定力的作用,火星的自转轴以大约100000年的周期在11度到35度之间变化。生命的演化依赖于长期稳定的气候。如果地球的自转轴在较短的时间内发生剧烈变化,这种稳定性将丧失,我们所熟悉的生命就不会演化出来。看来我们要向月球表示由衷的感谢,正是它使我们的存在成为可能。
月球对地球造成的最明显的影响是潮汐现象。潮汐摩擦使得地球的自转变慢,而且这个过程至今仍在持续。它导致的另一个重要的结果是使得地球和月球之间的距离变大,它们间的距离每年增大4厘米。
不难想象,地球也对月球产生类似的效应,而且地球的质量是月球的80倍,因此它的影响应该更大。很久以前,月球的自转就因为潮汐摩擦而变慢,直到变成被“俘获”的状态,或称为“同步自转”,意思是说它的自转周期精确等于公转周期。结果就是月球总是以同一面朝向地球。请务必记住,虽然月球总是以同一面对着我们,但它并不总以同一面朝向太阳,认为月球的背面总是暗无天日的想法是完全错误的。事实是在月球的背面将永远看不到地球,但月球两面的昼夜情况是完全一样的。
月球的自转速率很快就变成了一个常数,但是它在绕地球的轨道上的公转速度并不是固定不变的。根据太阳系里的普遍公转规律,月球在“近地点”(即它与地球最接近的那一点)时公转速度最快,在别处则要慢一些。因此,它在轨道上的位置和自转过的角度也不是完全一致的。结果,从地球上看,月球看上去在轻微地来回摆动。有时候我们能看到西部边缘更多一点的区域,有时又能看到东部边缘更多的区域。这种效应与其他一些更轻微的小“天平动”(即这种摆动的天文专业术语)叠加在一起导致的总效果就是,我们从地球上能看到月球总表面的59%,当然在同一时刻最多只能看到50%。只有41%的月表是我们无法看到的。
正文 我们的行星--生命的摇篮
2010-1-28 21:15:22 本章字数:1969
我们的行星--生命的摇篮
最初,地球处于熔融状态,这对生命而言实在是太热了。在大约5亿年的时间里,它逐渐冷却下来,形成了一个固体外壳。原初的大气中绝大部分都是氢气,但这种状况并不持久。能量稍高的原子很快就逃逸到宇宙空间中了,因为当时(现在也是)地球的引力太弱而不足以束缚它们。甚至很可能在某个时期,地球上根本没有大气,但这种状况也发生了变化。其时的火山活动很可能活跃得多也猛烈得多,来自核心深处的爆发很快就释放出了足量的气体,形成了一层新的大气。当然,这层大气与现在也很不一样,最明显的区别就是它缺少氧气。然而随着大气中的水汽开始冷凝,随之而来的地球进入所谓“暴雨”(Great Rains)时代,它的持续时间很长,雨水足以将低洼区域填满,形成最早的海洋。
地球形成时,也曾一度被残余的物质不停地“暴轰”。当我们观测月球时,能发现明显的证据,遍布其上的环形山就是在这一时期的撞击中产生的。当然,地球也经受了同样的撞击,但是它的绝大多数“伤痕”都被侵蚀掉了。值得指出的是,如果不是这种结构上的持续变化--平原相撞挤压出高山,今天的地球将是一个完全被水覆盖着的平整球体。地质变化的驱动力来自地心深处铀和其他不稳定重元素的衰变。正如我们已经看到的那样,这些重元素必定来自前代恒星的灾难性死亡。因此,适于生命出现的舞台能被搭建起来,许多发生在宇宙远处的天文事件是功不可没的。
生命的出现比通常认为的时间要早得多。最早能自我复制的生物体很有可能是在大约43亿年前出现的。生命的最早证据(来自第一代显然非常原始的有机体),就是大气中氧气比例的显着上升。相当数量的氧气的存在,是生命存在的不可辩驳的信号,这一事实让那些有志于在其他恒星周围寻找地球大小的行星的天文学家们看到了希望。尽管星际旅行或许只是天方夜谭,但我们完全有可能看到遥远星球的生命信号。迄今为止,最古老的生命遗迹是在格陵兰西部阿卡利亚岛(Akilia)上远古时期的岩石中发现的,距今已有38亿年。
生命起源的确切过程仍然不清楚,和众所周知的创世神话相反,现在还没人能在实验室里较为接近地重复这个壮举。理论认为(未经证实)化学反应是被诸如闪电和太阳的短波辐射等过程产生的能量激发的。随着时间流逝,越来越多的复杂分子被制造出来,直到最后出现了可以自我复制的分子。自我复制的能力,或繁殖的能力,是我们所谓的“生命”的基础。繁殖过程并不完美,每一代都可能发生随机的变化--复制过程中的误差。有些随机的“突变”(生物学上的术语)更加成功,比其他的变异存活得更长或者更易于繁殖,因此更有可能形成下一代,这种差异微小的形体之间的竞争就是进化论的核心要义。从那些原始可复制物质(仅仅是些复杂分子)演变出我们身边这些不计其数的生物的过程开始了,漫长而又神奇。
已知的最早的化石是细菌化石。这些有机体很可能存活于当时地球上的热海洋中。我们对它们的年龄测定满怀信心,因为地质学方法能告诉我们保存了这些原始有机体残骸的岩石的年龄。在这一时期的岩石中,我们也找到了所谓的“叠层石”,即由蓝绿色的藻类构成的岩石状结构,也被称为“蓝细菌”(或蓝藻)。蓝藻可以追溯到35亿年前,并且令人吃惊的是,有些类型至今仍然存活,例如澳大利亚领地的北部区域就以此着称。在地球的早期历史中,蓝藻在制造游离氧原子中扮演了举足轻重的角色,这一过程启动了制造适于呼吸的大气的进程。
我们已经发现生命具有极其丰富的多样性,有些生命形式的适应能力令人惊异,能在最严酷的环境中存活。例如,最早的生命可能出现的地方之一是在酷热的地壳裂缝口周围,也就是通常所说的黑烟口(black smoker)。其实就是海底的裂缝,炽热的酸液从下面涌出,由于恶臭的东西通常是黑色的,这一别名因此而来。从这些裂缝(至少在海平面下1英里处)涌出的酸水温度,可能高达400℃。水能够达到这么高的温度(远高于通常的沸点),是因为这里的压力是地表处大气压力的25倍。超乎想象的是,这些裂缝处有着相当丰富的特殊生命形式。像管状蠕虫、褐虾甚至蛤类,能在这种与醋一样酸的环境中生存并且不需要从太阳那里获取任何能量,而绝大多数其他海洋生物在这里将会立刻毙命。
世界范围内的化石记录能让我们追踪生命的进化历程。一般而言,生命进化得相当缓慢,在很长一段时期内,它们仅局限于海洋中,直到大约4亿年前的泥盆纪时期,生命才扩张到了陆地上,先是植物,然后是节肢动物(诸如昆虫、蜘蛛和甲壳类动物)以及脊椎动物。植物在陆地上生长,持续地改变着大气的成分。它们的存活需要通过光合作用从空气中吸收二氧化碳来合成糖分子养料。这一过程的副产品就是氧气,是由植物释放到空气中的。
正文 恐龙的梦魇
2010-1-28 21:15:24 本章字数:1314
恐龙的梦魇
生命史上最大的灾难发生于地质学上的二叠纪末期,距今2.5亿年。二叠纪持续了大约6000万年,可能是一个大面积沙漠化的时期。地球上的绝大多数陆地结合在一起形成了一片辽阔的大陆,称之为“大陆块”(Pangaea)。二叠纪的生物绝灭也经常被称为“物种大灭绝”,这可能是历史上最大规模的物种灭绝,其导致地球上绝大多数物种消失。这一结论当然能从化石记录中找到证据,但对灾难发生的原因,线索就不那么明显了,至少我们并没有看到陨击坑。相反,线索来自一种碳分子,即“球壳状碳分子”。这些分子形成一个笼状的结构,大多数都呈球形,它们在诞生时可以把单个的惰性原子俘获到“笼子”之中。人们在二叠纪末期的球壳状碳分子中发现了氦元素和氩元素,它们很可能来自宇宙其他恒星的大气,这些恒星在太阳尚未形成之前就以超新星爆发的形式结束了一生。这些被发现的化学分子可能是一个流星体的残余物,而该流星体所携带的物质来自太阳系形成初期。有理论认为,流星体撞击的结果引发了无数的火山活动,喷发的物质覆盖了整个陆地的表面达3米。因此,90%的海洋生物和70%的陆地脊椎动物没能存活下来也就不足为奇了。
在二叠纪期间,爬行动物出现了,我们迎来了恐龙时代。有的恐龙是巨大而又凶猛的猎手,而有些却是矮小的素食动物,一个小的没有杀伤力的恐龙,甚至只和金丝雀一般大,被昵称为“雀龙”(Tweetieosaurus)。
恐龙主宰了地球将近两亿年(与之相比,人类出现在地球上还不到20万年),但是之后,在地质学年表所称的“白垩纪”时期,即6500万年前,强大的恐龙家族突然消失了。不过它们也不是一只不剩,今天的鸟类看来应该是那些弱小的恐龙的后裔,只是长上了羽毛。在我们的立场看来,恐龙的离去或许是一件好事,因为这意味着哺乳动物的多样性得以保持,从小土拨鼠到我们今天看到的种类繁多的物种才可能诞生。猿类在中新世时期(至今2500万年到至今500万年前)进化出来,它们是我们的直接祖先。
对物种大灭绝的原因的研究是一个热门课题,观点也五花八门。目前,就恐龙的灭绝而言,现在的主流理论是一个巨大的小行星撞击了地球,抛撒出了大量尘埃,并引发了全球性的灾难--甚至有人宣称撞击的地点业已被证认出来。
在墨西哥湾附近有一个巨大的陨击坑,我们已探测到它被侵蚀的痕迹。这个证据主要基于一个事实,这一时期累积下来的岩石在一大片区域上包含比预期中更多量的铱元素,铱在地球上极为稀有,但却是流星体的特征元素。我们并不肯定是这次撞击毁灭了恐龙,但这个理论得到了广泛的支持。
现在,让我们花些时间来讨论一下地球上的生命是很有必要的,因为接下来的问题将是,这一系列事件是否在别的星球上发生过?如果其他地方也有像地球这样的行星绕着与太阳类似的恒星旋转,那就有理由期望能在其中找到某些类型的生命,尽管我们对生命是如何开始的仍一无所知。不过我们永远也不能肯定,直到(假如有一天)我们探测到了来自另一个文明的信号。这种搜寻一直在继续,然而,所有直接搜寻其他文明信号的努力至今仍然只交了一张白卷。
正文 火星上有生命吗(1)
2010-1-28 21:15:25 本章字数:1697
火星上有生命吗
当我们计算我们搜寻成功的概率时,需要考虑哪些因素呢?首先必须明确一点:我们讨论的是我们所了解的生命。我们能理解的所有类型的生命都基于一种类型的原子--碳原子,只有它能连接足够多的其他原子来形成必须的复杂原子群或分子。这就是说,生命,不管它在哪里存在--这里,火星上或者在遥远星系中的一颗行星上--必须是碳基的。像月球这样没有大气的环境必须被剔除。在我们的太阳系,可能只有地球适宜形成复杂的智慧生命。当然,反过来说,我们可能完全错了,说不定还存在某种智慧生命,它们的身体由金原子组成,并且能在满是硫酸的空气中呼吸。这种类型的生命(BEM或称为异态生命),自韦尔斯(1866-1946, 英国作家)以来一直是科幻小说家们十分钟爱的话题。但如果它们真的存在,那么我们整个现代科学将被全盘颠覆,不过这看起来可能性不大。
最低限度,我们已经知道许多恒星确实存在行星系统,但是一颗能支撑生命的行星,必须满足几个条件(我们再次强调,我们只考虑自己能理解的这种类型的生命。一旦我们把话题开放到所有类型的生命,就会陷入到无穷多的假想中去,所以,现在我们着意把讨论限制在碳基生命的范围内):行星必须具备包含了足够多自由氧气的大气;它必须有固态(或某些可能的液态)表面;行星上必须有足够的水资源;相对比较稳定的温度;以及很长的稳定期,在此期间环境没有发生剧烈变化。地球能满足所有这些条件,但太阳系其他天体都不行。
不过,可能还有一些不那么明显的要求。例如,比较规律的昼夜交替看来也是很有必要的。如果行星的一半永远是黑暗,而另一半却永远曝晒于阳光下,那将会发生猛烈的飓风,降水也不再发生而且很难达到生命适宜的温度。当然在明暗半球的交界处或许存在合适的区域。
现在让我们聚焦在温度上。在一颗恒星周围存在所谓“可居住带”,位于这里的行星不会太冷也不会太热,适宜生命繁衍。金星和火星都不在可居住带内:金星太靠近太阳、太热,而火星太远、太冷。只有我们居住的行星安安稳稳地位于可居住带的中央;地球的温度,就跟给婴儿喝的麦片粥一样,不冷不热。一颗比太阳亮度低的恒星,可居住带将靠得更近,而一颗能量更大的恒星,可居住带将位于更远处。许多要求都是不证自明的,它们将许多恒星剔出了行星系统候选者的行列。例如,一颗变化剧烈的恒星,将导致行星上的气候总是变化无常。
我们已经知道银河系里拥有大约1000亿颗恒星,这是一颗大型星系中的典型恒星数量。从目前的观测来看,很可能大多数单颗恒星都有行星,于是我们周围很可能有大约400亿个“太阳系”。这些“太阳系”的行星中有多少颗位于中央恒星的可居住带内呢?从我们自身所在的太阳系的情况来看(这也是我们唯一能充分了解的行星系统),我们或许可以猜测每个恒星-行星系统中都有一颗行星位于可居住带内。但是,我们必须排除那些激变变星周围的行星,因此大概还剩下200亿颗处于适宜的位置的行星。它们中有多少是岩质行星?这又是个新问题--正如我们已知的那样,其他的恒星-行星系统中可居住带内的行星似乎都是巨型气态行星。要想计算出在位于适宜的位置上的岩质行星所占的比例是很困难的,但是在已知的约120个系统中,有30个没有气态行星,因此用这些已知的数据作为参考,可以估计出我们大约有50亿颗行星邻居,它们的条件能允许生命形成。其中有多少颗已经有生命形成了?这可能是所有问题中最难的一个,要回答这个问题,我们需要知道并了解生命形成的确切机制。老实讲,生物学家们还没有找到经过实验证实的详细理论,因此要想比较准确地得出这一数值极其困难。如果概率仅仅是万亿分之一,那么在银河系中能有一个像我们这样的文明就已经是一个不可思议的奇迹了。如果如有些人所料,概率接近百分之一,那么将可能有数百万颗行星值得我们去搜寻。这一疑点正是为什么寻找火星上的生命是如此重要的主要原因之一,如果生命能在同一个恒星-行星系统独立出现两次,那么整个银河系中遍布生命的概率必将极大增加。但是,即便这就是事实,我们的难题也并没有完结!
正文 火星上有生命吗(2)
2010-1-28 21:15:27 本章字数:1529
接下来我们必定会问,一旦那些地外生命形成了,它们演化成可以和我们交流的智慧生命的可能性有多大?有些生物学家相信,生命一旦产生,就必定会演化成智慧生命,但另一些生物学家也同样振振有词地认为像我们这样的智慧生命是绝无仅有的。这些文明中有多少能被我们探测到?它们必须已经达到或者超越人类在近一百年才达到的科技水平。接下来我们必须考虑,一个文明由于自然灾害或自身过失在毁灭之前(以现阶段的我们自己为例,后者的可能性似乎更大),它有能力与外界通信的时间能持续多久。至此,我们的估算中的不确定性是来自生物学而非天文学了,我们等待着生物学的进一步发展。现在,请记住到目前为止我们考虑的仅仅是我们的银河系--数十亿个星系中的一员。那种认为在整个宇宙中我们都是绝无仅有的想法令人恐惧。
如果地外文明确实存在,有没有什么方法可以和他们进行有意义的联络?现代宇宙飞船可以被排除掉,这一点无需多伤脑筋。因为即便我们能以光速旅行,要想到达哪怕是最近的恒星系统中的行星上,也要花费几年的时间,而且根据爱因斯坦的相对论,以光速飞行要消耗无穷多的能量--也就是说那是不可能的。显然,用现代火箭的话,这个旅行需要持续好几个世纪,而且必须准备诸如“太空方舟”这样的设备,因为最初的旅行者在旅程早期就已逝世了,只有他的后代能活着登陆目标行星。现阶段,这种想法看来只存在于科幻小说中。星际旅行要求的是一种革命性的技术,或许明天、明年、100年后甚至100万年后才能实现,又或许永远也实现不了。就算实现了这个技术,从唯物主义的观点看来,我们也只能局限在太阳系内活动。
至于星际通信,至今我们只尝试了一种方法:电磁波。电磁波以光速穿行,因此我们与最近的候选恒星间的通讯时间只需要几年。而且,用我们现有的仪器可以把通信电波发送到很远的地方(数十光年)。假设有天文学家生活在环绕波江座 星运行的行星上,距离我们11光年,我们现在发出的电波信号已足够强大,足以让他们接收到。
我们可以根据数学逻辑制定传送信息的编码方式,毕竟数学不是我们发明的,我们只是发现了它。人们已经向许多候选恒星系统传送了编码后的信息,不仅仅包括波江座 星,还有许许多多别的恒星。当然联络的过程注定是漫长的,如果2006年我们向波江座 发送了一个信息,它将在2017年到达那里,因此在2028年之前都别指望会有回音。想要获得极快的回答相当困难,但是这可以作为改进我们现有想法(即这种类型的实验是值得去做的想法)的一种测试。如果我们根本收不到任何回音,或许就说明了我们正在做着错误的实验,也就是说在我们可以联络的范围内不存在科技文明,换句话说,人类确实是独一无二的。
我们无法把宇宙飞船送往别的星球,但是一个更高级的文明可能完全有星际旅行的能力。我们没必要被任何飞碟故事、外星绑架或半人马座 上的侵略者的故事说服,但我们必须记住我们自己只是一个新的而且无疑是相当初级的文明。有人建议我们应该尽最大可能不被地外文明探测到,甚至召回那几个探测器,譬如正在永远离开太阳系的旅行者2号,但即便这在技术上能够实现(实际上实现不了),也不合逻辑。或许我们该听从珀西瓦尔·洛厄尔先生的劝告而放松一些:“一个有能力抵达地球的文明,会把战争抛诸脑后,将是为和平而来。”不管怎么说,现在让我们保持缄默已经为时过晚。我们从1920年就开始向地球外广播了,因此对80光年内的任一文明而言,我们都是一个聒噪的“射电源”。
我们知道地球生命的未来是有限的,最终太阳光度的增加将摧毁我们的世界,使它变得不再适合居住。我们必须将眼光放长远些,因此让我们看看宇宙的未来。
正文 章序
2010-1-28 21:15:29 本章字数:1120
第六章 透视未来 现在到大爆炸后187亿年
追溯过去时,我们有确切的证据可以遵循:从地球的化石记录中我们可以一览这颗行星极早期的历史;从月球环形山我们发现了远古时期小行星激烈撞击的证据;从蟹状星云我们看到了将近1000年前的那次猛烈的超新星爆发;而当我们凝视遥远星系的暗弱星光时,我们看到的是它们在数百万年前的样子。如果我们测量出它们远离我们而去的速率,就能建立一幅关于数十亿年前时的宇宙的可靠图像,而且通过仔细研究微波背景辐射,我们可以勾勒出大爆炸后仅仅30万年时的宇宙图景。
但未来则扑朔迷离得多:我们不可能看到恒星或星系在未来的样子,因此我们只能依靠演绎法,并且引入相当多的科学假设。尽管宇宙历史的许多页面已经被破译了出来,但我们对大约60亿岁之前的宇宙比从60亿岁到现今的宇宙了解得多得多。
地球在宇宙中或许是无足轻重的,但对我们而言,它显然有着无可比拟的重要性,因此让我们首先来看看在这颗行星的未来面临着哪些威胁。平均而言,每过几十万年,地球就要被一颗大到足以引发巨大灾难的陨石撞击一次。事实上,最近我们已经跟踪到了几个小行星,它们在令人警惕的、离地球很近的地方飞过。有几颗在仅有几万英里的距离处与地球擦肩而过,比地月间的距离还小得多。它们被称为“潜在威胁小行星”(PHAs),如果直接撞上地球的话,其中任何一颗都可以引发又一次“物种大灭绝”。如果一颗潜在威胁小行星在它撞击地球之前就被仔细观测过了,我们可以对它做一点事情--或许可以在它附近引爆一颗核弹,改变它与地球相撞的命运。
但是我们不得不承认,一个大小仅有几英里的小天体的碰撞就会给人类带来灾难,而我们能做的事情或许并不比恐龙高明。令人担忧的是,尽管我们正努力消除这种类型的威胁,但最近发现的例子中,有几个是在它们已经路过地球之后才被探测到的。
还有一些具有相当可能性的自然灾难,会使得地球生命提前终结。近来,地质学家对超级火山的爆发潜力开始有了些了解,这种爆发可能由在极端压力下的巨大岩浆池引发,其中一个已经在怀俄明州黄石国家公园发现了。这些火山中的任何一个爆发都会导致在大气中产生全球范围内的尘埃残粒,它们相当密集而且持续时间很长,使得大多数动植物因缺少阳光而死亡。现在有人认为过去发生的一些大灭绝可能就是源于超级火山的爆发。
而人为的灾难也是可能发生的。我们现在已经拥有了毁灭自身的能力,而且我们似乎还没有文明到不去这么做的程度。不管人类会做什么傻事,地球的最终命运是和太阳联系在一起的。我们的存在归功于太阳,而最终毁灭这颗行星的,也是太阳。
正文 地球生命的结局
2010-1-28 21:15:31 本章字数:1200
地球生命的结局
太阳正在逐渐消耗它的核能,但令人吃惊的是,它正变得越来越亮。这个过程发生得非常缓慢,对我们而言,根本察觉不出来。随着太阳核心氢元素的慢慢消耗,它会略微收缩,导致核心压力增加并且温度升高。核反应的效率显着依赖于核心的温度,因此燃料也将加速消耗。10亿年后,太阳更加炽热,足以让地球上的气候变得酷热难耐,地球上的可居住区域将不得不远离赤道区域,向两极收缩。
但这将仅仅提供一次短暂的避难。随着低纬度地区变得不再适宜居住,沙漠将开始扩张,而且适合农作物耕作的陆地面积将严重不足。大陆板块的漂移也早已破坏了现在我们所熟悉的大陆的形状。任何现存的冰盖都将融化,导致海平面剧烈上升,陆地的绝大部分都将被洪水淹没。
温度还在无情地攀升,到至今30亿年的未来,将达到一个关键点。太阳将比现在亮40%,因此地球表面上的所有水分都被蒸发掉了,海洋消失了,我们的世界将变成炎阳炙烤下的炼狱。
如果在地球环境如此剧变的时候,人类仍然存在,这些我们的遥远后裔将如何应对呢?这些变化初露端倪就会被探测到,警铃就会拉响,但即便是高度发达的文明也不太可能控制太阳。毫无疑问环境变化应对委员会将召开会议,但是议程表上该怎么写?把地球移动到一个更安全的位置或许是可行的,但正如我们后文将要讲到的,这也不是永久的解决之道。或许可以把地球整个从太阳系中移出,并且尽量让它能自给自足,这样生命就能在没有太阳的环境中存活。如果这实施起来困难太大,人类可能会考虑大规模地移民到别的地方去--到另一个太阳系或者建造一个巨大的、自给自足的空间站来收留幸存者。
如果人类只能束手无策,随着时间的推移,整个地球很可能变成一片熔融而滚烫的岩浆世界。一切都不能幸免,最终所有的生物都将被一笔勾销。火星将变得比现在热得多,它那巨大的极冠(由二氧化碳和水组成)也将开始融化。大气也开始形成,短期内--大约几千万年的时间里,火星会暂时成为一处宜居的处所。但是这种环境不会保持很长时间。火星太小了,引力太弱而不能长期保持住在它表面刚形成的大气。
有人提出人类可以找到一个避难所--土卫六,土星最大的卫星,它有着富含氮的稠密大气。可惜,事实绝非如此。土卫六的表面大气逃逸速度很低,之所以能保有大气是因为它非常寒冷,因为在低温下,气体分子的运动速度也很低。如果温度上升,哪怕仅仅只有几度,土卫六的整个大气就将消散无踪。
在接下来的5亿年里,太阳将膨胀到现在的两倍大,尽管表面温度会降低,但它的光度将增加一倍。地球的轨道也会受到影响。太阳发出的恒星风将大大增强,质量不断损失,进入了红巨星阶段。质量变小意味着太阳的引力将减弱,相应地,行星轨道会向外扩展。地球将移动到距离太阳2亿千米处--当然,离它逃离炽热太阳的炙烤还远得很。
正文 红巨星的太阳
2010-1-28 21:15:32 本章字数:822
红巨星的太阳
展望更遥远的未来,大约离现在50亿年,太阳核心的氢将燃烧完毕,再也没有氢剩余下来--它们全都在核反应的过程中被转化成了氦。核心突然失去了由核反应释放出来的辐射压力的支撑,在强大的引力作用下,坍缩不可避免地开始了。外层物质轰塌而来,压缩了核心并且加热了物质。直到现在,氦原子核还没有参与核反应。然而,在几秒钟的时间里,温度就将升高到足以触发新一轮的核反应的程度:氦原子核聚合形成铍原子和锂原子。这个核反应的效率要高得多,其后太阳的辐射将比现在强2000多倍,而且它的体积将急速膨胀,并将水星和金星吞没其中。太阳,终于变成了一颗红巨星。
在演化过程中的某一阶段,红巨星的太阳变得不稳定起来。通过一系列剧烈的脉动,它的外部包层被吹离到遥远的星际空间中,形成所谓的“行星状星云”。
需要指出的是,行星状星云和行星毫不相干,它只是一颗演化到了晚期的恒星抛射出的外包层。它们是宇宙中难得的奇观,有着绚丽多姿的美丽外表,但存在时间却只有几万年。其中最着名的是天琴座环状星云(M57),用一架小型望远镜即很容易地找到它,因为它正好位于两颗肉眼可见的恒星--天琴座 和天琴座 --的中间,靠近明亮的织女星,甚至用中等口径的双筒望远镜也能看到它。在望远镜中看,它像是一个发着微光的圆形轮胎。M57看上去是对称的,但是别的行星状星云的形态却千差万别,令人眼花缭乱,它们的形状取决于物质从中央恒星处抛射出来的确切物理过程。目前看来最常见的形状是沙漏形,即大多数物质都沿着恒星磁场的轴线方向分布。根据这个模型,行星状星云既可以是沙漏形的也可以是环形的,取决于我们看到的是它的侧面还是正面。粗略地讲,这一模型是准确的,但是还有许多细节有待于更详细的解释。从化学上看,行星状星云是宇宙中最令人感兴趣的区域之一。行星状星云形成的早期,在中央恒星发出的光辐射的作用下,形成了许多复杂的分子。
正文 白矮星--坍缩了的太阳
2010-1-28 21:15:34 本章字数:549
白矮星--坍缩了的太阳
同时,回过头来看中央恒星,既然可供燃烧的燃料都耗尽了,就再也没有什么能阻碍恒星在它自身引力作用下的坍缩了,而且这种坍缩发生得非常快速。最终,恒星的密度变得如此之大,导致一种新的抵抗力--简并压力--的产生,开始发挥作用并与引力相抗衡。简并压力的产生是“不相容原理”的结果,这是量子力学理论中的一条基本原理,即不可能有两个粒子能处于同一种状态下,也就是说,如果两个具有相同的电量、质量和能量的粒子靠得太近,它们就会互相排斥。恒星会一直坍缩,直到简并压力和向内挤压的引力恰好达到平衡为止。在这个新状态下的恒星成为一个比地球还小但是密度却高得令人难以置信的致密球体,称为“白矮星”。一勺白矮星的物质即重达数吨。到这一阶段,地球将退离至距这个能源耗尽的太阳的虚弱残骸2.7亿千米的地方。
接下来的命运又将如何?答案是“变化不大”。白矮星是资源枯竭的恒星,它没有能源,能做的唯一一件事就是在微弱的辐射中慢慢变暗,最后变得和周围环境温度相同。它变成一颗冰冷、暗淡的黑矮星所需要的时间之长超乎想象,事实上,相比之下宇宙都显得太年轻,还没能形成一颗黑矮星。或许我们的太阳将定格为一颗微小的、死亡的黑矮星,但仍然被残存的行星所环绕。
正文 中子星和黑洞
2010-1-28 21:15:36 本章字数:519
中子星和黑洞
质量较大的恒星的结局则有所不同。尤其是当恒星质量很大时,它的核心变成白矮星后,质量仍超过了所谓“钱德拉塞卡质量”,即1.4倍太阳质量,这时量子简并压力也不足以和引力抗衡了。相反,引力是如此巨大,以至于质子和电子都被挤压在一起,变成了中子,恒星成为一颗“中子星”,它的密度比白矮星还要大得多,一勺中子星物质的质量就与全人类的总质量相当!中子星个头极小,直径不超过15千米,但它们的平均质量高达太阳质量的1.5倍。如果你能站在一颗中子星的表面,你的重量将达到百亿吨的量级。中子星实际上也是超新星遗迹中最常见的天体。我们看到的神秘天体--脉冲星,其实就是中子星的一种伪装。
返回书籍页