必读网 - 人生必读的书

TXT下载此书 | 书籍信息


(双击鼠标开启屏幕滚动,鼠标上下控制速度) 返回首页
选择背景色:
浏览字体:[ ]  
字体颜色: 双击鼠标滚屏: (1最慢,10最快)

(079)气象观测

(现代)
气象观测
了解气候减少灾害
可怕的“天灾”
气象灾害是自然灾害中影响范围最广、出现频率次数最多、造成损失最大的灾害。气象灾害种类很多,说法不一,有人根据气象灾害形成的原因、性质以及对人类生命财产的危害程度,把它分成七大类17种,比较细致。这里挑几种比较常见的天气灾害略加叙述:(1)暴雨洪涝:发生暴雨时,降雨量集中,降水强度大,特别是有时候在短短的几天时间里,可能会降下达到或超过一年的平均降雨量,于是洪涝灾害就发生了。
我国属于季风气候,雨带由南向北移,季节性比较强,从春季开始,南北气流遭遇后,开始向北移动,一旦双方势均力敌时,形成的雨带就会徘徊在某一地区,因而形成大面积降水。如我国河南省泌阳县林庄某年8月份,两天内降下1605毫米的降水总量,是当地年平均降水量的两倍。
我国的洪涝灾害比较多,有人进行过不完全统计,从公元206年到1949年的1743年间,我国就发生了大水灾10000多次。解放后,水灾仍很频繁,从1951年到1988年,我国平均每年发生洪涝5.8次。巨大的洪涝灾害,给人民的生命财产造成了无法估量的损失,例如: 1887年,长江流域发生洪水,死亡150人; 1915年,珠江流域发生洪水,死亡10万人; 1931年,长江中下游地区发生洪水,使受灾人口扩展到2800多万人,14.5万人死亡。沿江的湖北、湖南、江西、安徽、江苏等5省有205个县共5000万亩耕地被淹。
1954年,长江流域发生持续性暴雨,引起洪水,1800万人受灾,1.3万人死亡,近5000万亩农田被淹没。
1963年,河北地区降下特大暴雨,造成农田6600万亩被洪水吞没,直接经济损失达60多亿元。
有人还进行过统计,从建国到90年代初,我国每年平均仍有1.2亿亩农田被洪水淹没,其中6000万亩农田减产,200万间房屋倒塌,数千人死亡。
(2)干旱:
干旱和洪涝相反,它表现为久晴少雨,连续高温。由于干旱时土壤水分蒸发后得不到及时补充,农作物因缺水、枯萎而减产;严重时,当地的工农业用水、生活用水也会受到威胁。另外,干旱时气温高、空气湿度小,很容易引起火灾。
干旱的成因很容易理解,以我国为例,当北方吹来的干冷空气与从南方吹来的暖湿空气交合时,自然会引起降雨。但是如果这个雨季由南向北或由北向南跳跃过快,雨季的持续时间短,而受单一气流的影响时间长,这样就会引起高温少雨的天气,时间一长就酿成了干旱。干旱有春旱、夏旱、秋旱,夏旱又分初夏旱和伏旱,也有冬春连旱、春夏连旱或夏秋连旱的现象。
干旱带来的损失并不亚于洪涝。有人进行过统计发现,从1950年到1980年,我国平均每年旱灾面积就达30,321万亩,约占全国各种气象灾害总面积的60%,如比较严重的1959、1960、1961、1978年,我国受旱面积分别达50,710、57,187、56,770和50,860万亩,每年损失的粮食均在1,000万吨以上,其中1959年因干旱损失了约2,000万吨粮食。干旱还会引起人畜死亡。如192O年,陕西、河南、山西、山东、河北等5省大旱,死亡人数达50万。
(3)热带气旋:
它是一种强大的对流空气涡旋。一般发生在西北太平洋和南海热带海洋区。它的风力比较大,中心附近风力最高可达12级以上,影响范围也比较广,可达几万平方公里。热带气旋的产生需要很大的能量,有些科学家认为这些能量是通过水汽凝结后释放出来的。也正因为如此,热带气旋发生时,常常伴有暴雨。
热带气旋并不是台风,但台风是热带气旋,中心风力要达12级(约每秒32.7米)以上。热带气旋还有另外三类,即热带低压、热带风暴、强热带风暴,其中心风力分别分为7级(17.2米/秒)以下、 8~9级(17.2~24.4米/秒)、 10~11级(24.5~32.6米/秒)。我国是世界上热带气旋出现最多的国家,每年约有30个,其中台风登陆的约有7个。而平均起来,根据40多年的统计,菲律宾每年只有4.6个,日本有3.4个,美国有3.2个。形势对比并不乐观。
热带气旋产生时夹有狂风、暴雨和巨浪。它严重威胁着海上航运与作业,以及沿海地区的工农业生产和人民生命财产安全。有人经过比较作出结论,在一次灾害中造成的损失,热带气旋已经超过了地震和洪水。全球每年因热带气旋平均死亡2万人,经济损失约 70亿美元。而我国,仅以 1992年为例,登陆的热带气旋就有8个,其中9216号台风影响最大,浙江、广东、福建、江苏、山东等省受到很大的破坏,经济损失达70亿元以上。
热带气旋产生于三大洋,即太平洋、印度洋、大西洋,太平洋上的最多,约占63%。在我国登陆的热带气旋主要在西太平洋我国南海海面生成,它们在全世界热带气旋中占比例最大。如 1951~1992年的 40年中,此处就产生过1178个热带气旋,每年28个,居全球八个热带气旋发生区之首。热带气旋产生的季节性比较强,主要集中于7~10月。我国从5月到10月都有热带气旋登陆,其中7、8、9三个月最多。热带气旋登陆的个数每年不定。如1971年全世界有40个,而1951年只有20个;再如我国1971年登陆的热带气旋有12个,而1951年却只有3个,两者分别相差1倍、3倍。
热带气旋中台风势力最猛,份量最大。在中低纬地区的海面上,海水温度高达30℃时,表层水份要大量蒸发,使空气变得暖湿,如果存在一个低压中心,就会产生辐合上升,形成涡旋。如果涡旋释放的能量能保存得好时,台风就开始渐趋成形,当风力、降水达到一定程度时,就发展成了台风。一个成熟的台风在一天内可降下几百亿吨的水,据称,由水汽凝结放出的潜热能,相当于几十万颗1945年在日本广岛投下的原子弹能量。
(4)雷电风雹:
雷电风雹包括大风、雷雨、冰雹等。雷电风雹灾害影响的范围小,但是破坏性大,常使人猝不及防。
在雷雨天气中,常常伴有耀眼的闪电和震天动地的雷声滚过,这是一种放电现象。在大块的积雨云形成后,云的内部因为粒子碰撞等原因,会形成很大的电荷。当云体带有大量的负电荷时,地面物体会带上正的感应电荷,同样,近地面空气中也会带上正电荷。云上的负电荷向下延伸,一旦到达地面很强的正电荷处,就会产生放电现象。放电时空气增温并膨胀,造成雷声。
雷雨天气时,你常常看到树枝分权状的闪电,但闪电绝非一种。一些人就见过一种球状闪电,它像一只飞舞的火球,到处乱窜,甚至会发生爆炸。
这种球状闪电常常呈红色或桔黄色,飞行时带有噼里啪啦的声音。科学家们推测,它可能是一种带有高温和巨大能量的等离子体,即气体分子电离后的混合态。球状闪电的破坏性不容忽视。1994年4月11日,在河南省省城县黄柏山小学发生了球状闪电伤害事件,当场造成13名儿童休克,附近的工人昏倒,全校125名师生受到不同程度的伤害。
此外还有一种黑色闪电,它常常在雷雨期间出现在树上、屋顶上、金属表面上,很容易爆炸。1974年6月23日,前苏联天文学家B·契尔诺夫就亲眼见过一个飞快滚动的黑色闪电。科学家们说,黑色闪电是由粒子会聚形成的气溶胶聚物放出来的,它的危险性也不容忽视。
雷电并不是劈不死人。1993年南斯拉夫的一个足球场上,雷电当场就劈死一名叫巴尼奇的运动员;而且动物也常常未能幸免于难。在1992年,美国一个农场中曾有12头牛同时在一棵树下因雷击而倒毙。
冰雹,大多在雷雨天气中出现。它的形成过程很复杂。在对流强烈的云中,云中的水流上升很快,每秒钟可达15~20米。由于上升的温度变低,大量的水所凝结成云滴,此时云滴还没有冻结。接着,云滴随着继续上升,其中一些比较大的水滴上升较慢,并同其他水滴相遇,经过合并后不断长大,形成雹胚。雹胚不只一种,霰就是这样。当云中的冰晶与水滴相撞后,水滴会在冰晶上冻结,并形成一种冰球。遇到温度低的水滴时,雹胚会逐渐长大;有时候它也会因为重量变大而下降,但较强的上升气流又可使之上升。这样上上下下,三番五次后最终造成了透明、半透明的交替结构,并降到地面。
冰雹一般出现在春季和春夏之交。有时候,冰雹在形成过程中可能会遇到昆虫,一不小心,这些昆虫会被卷入冰雹之中,充满了冰雹核,于是一层一层的冰壳就把小虫子包裹起来。1979年4月25日,在湖北江陵县普济、滩桥的一些地方就发现了包有小虫子的冰雹。千万别以为是神在作怪,它不过是自然现象而已。
冰雹在雪天里也有可能出现。1983年3月3日,河南省林县南部沿淇河一带,就发生过雪天里打雷降雹的现象。暖湿空气在上升时产生了积雨云,所以发生了雷雨现象,后来北部冷空气加入进来,造成气温急剧下降,雪与冰雹于是就有了同时产生的机会。1982年2月6日,我国贵阳也出现过这种现象。冰雹小的如豆子,大的如鸡蛋,从高空中打下来,经过加速,其落地速度与炮弹的威力差不多,它会破坏庄稼和水果,也能给人畜带来伤亡。
龙卷风的是大气中最强烈的一种涡旋现象。它的外形看起来像一个猛烈旋转的圆形空气柱,上大下小,从浓积云或积雨云中伸向地面或水中,其空气猛烈地旋转着,颜色有乳白、灰色、黑色等。远远看去,它好似一个巨大的大象鼻子在空中舞动。龙卷风发生在陆地时,人们叫它陆龙卷;当它在江、湖、海的上空出现时,人们称之为水龙卷。当水龙卷出现时,只见一条水柱升向天空,还真像是一条青龙在吸水呢!
龙卷风形成条件比较复杂,一般认为需要强烈的对流上升运动,并只有大气极不稳定时才有可能产生。龙卷风出现以春末夏季为多,低纬地区的岛屿每年都可以见到。我国月乎每年都有龙卷风发生。但水龙卷在华南、东南沿海比较多见;陆龙卷以华中、华北较多。
龙卷风的风速很大,根据计算,龙卷风的风速可达每秒100米,甚至200米、300米。龙卷风中心气压只有400百帕左右;最低的只有200百帕,而一个标准大气压是1013百帕;所以龙卷风中心气压极低,再者,龙卷风从中心到边界距离只有几百米,所以四周空气向中心流动极其强烈。
龙卷风以螺旋形上升的空气速度每秒达到上百米后,它就可以轻而易举的吸取各种东西,并卷到空中,到处是一幕幕恶作剧。如果龙卷吸起鱼塘里的水,水里的鱼呀,虾啊,螃蟹啊,泥鳅啊,就都被卷到空中了,掉下来之后,就形成了什么“虾雨”、“螃蟹雨”、“泥鳅雨”等。1834年5月16日,印度出现了一场怪雨,一个村庄中满地是鱼。1862年3月1日,法国南部地中海沿岸的土伦地区,天空下起了“青蛙”雨。龙卷风甚至还吸人。据称,上海一位农妇被龙卷风吸到空中后,又把她摔在离原地三百米以外的地方,竟然幸免于难。
当然,龙卷风在搞那些令人捉摸不定的把戏时,对人们也造成了很大的危害。1956年9月24日,一个巨大的龙卷风把上海浦东江边的一个11万公斤重、比三层楼还高的大储油罐卷到了高空,再把它摔到120米以外的地方,造成油罐里面正在作业的工人伤亡。而更大的灾害则是龙卷风对全国地区的肆虐。如1972年4月16日~24日,全国 17个盛自治区、直辖市的300多个县、市发生了冰雹大风,部分地区出现了龙卷风,它们使200万亩农田受害,房屋50万间倒塌,121人死亡,1800人受伤。
不过,说龙卷风、台风对人类如何如何危险,并不表明一种观点,即一般的大风就没有危害。当风力过大过猛时,起码它对人们的间接伤害不可低估。1968年4月22日,渤海海面出现8~10级的偏北大风,使山东莱州湾海水上升,冲破海堤上100多华里,海水倒灌10多华里,造成300多人失踪。
又如 1982年 3月 1日,红星 312号客轮在广东三水县河口乡遇到了强雷雨大风而翻沉,死亡200多人。还有,令人意想不到的是,当气温很低时,刮不刮风的结果是绝对不一样的。1965年7月,在挪威地区刮来的冷风,竟然割破了人的皮肤。
(5)冷冻:
冷冻灾害发生时,常常伴有寒潮、霜冻、雨淞、大雪、冻雨等天气变化。
但冷冻害的发生具有相对性,并非表明只有绝对的低温才能带来灾害。造成冷冻灾害的形式有下面几种:寒潮,是进入秋季后从北方侵袭而来的强冷空气。一般它会使当地气温骤降10℃以上,最低气温低于5℃。寒潮发生时,所到之处刮起6级以上的大风,造成沙暴、雪暴,严重威胁着畜牧业和种植业生产。同时,由于气温低,严寒和霜冻也会发生,于是农作物受冻,江河湖海结冰,交通受阻;我国长江中下游地区的早稻、春播也受影响较大。
寒潮入侵我国有西、中、东三条路线,它们都从北冰洋出发,西路从新疆过来,中路路过蒙古人民共和国,东路扫过我国东北地区,最后都经东南沿海到达南海和太平洋。
霜,是空气中水汽在0℃以下时,在地面物体表面形成的白色晶体。它要水汽达到饱和并凝华时才能产生。霜冻只指打霜时温度过低,使土壤或作物表面降温太快,造成损伤的现象。霜有时候不显现,因为空气中水汽未达到饱和状态,这叫暗霜或黑霜。
形成霜冻的原因有三个。一是发生大寒潮时,冷空气席卷的地区会剧烈降温,这叫平流霜冻;第二种是辐射霜冻。在晴朗无风的夜晚,由于地表或作物强烈地向外辐射散热冷却时,霜冻随之而生;第三种叫平流辐射霜冻,它要在既有冷空气,又有地表散热作用时才发生。这三种霜冻,第一种持续时间达三、四天,在南方地区危害很大。
雨淞是冻雨的一种形式。它是一种白色透明或半透明的冰壳,牢牢地粘附在地面的物体上。有时候看起来,树枝上、电线上似包裹上了一层晶莹的薄冰,把世界装点得美丽缤纷。
雨淞的形成过程很怪,当高空的空气按垂直分布在冷、暖、冷三层时,高层的冷空气若穿过暖层,冰晶马上就会融化,但融化后的水滴在下降时又遭遇到了冷空气,马上变冷,再继续下落,最后粘附到贴地的各种物体上,形成冰壳。可别以为好看,那电线上的冰壳破坏作用很大,弄不好就让电线折断,到时电信中断可就麻烦大了。
对于雪天,人们似乎总是抱有盼望的态度。那纷纷扬扬的鹅毛大雪是多么令人心旷神怡、爽心悦目啊!
可是事情过了头,就成了祸害。一旦降下的雪太大时,造成的损失就不小了。这一点好多人不相信,这里举个例子看看。1983年1月17日~19日,长江中下游地区出现特大降雪。许多地区积雪深厚,最严重的可达半米深,结果电线结冰,通信、输电线路中断。仅江苏省就有六百二十多万伏以上的输电线路被切断;两万多根电线杆倒伏,南京机场关闭了近一个星期,京沪铁路停运一天多。
冷冻灾害的最大受害者是农作物,它造成大面积农作物减产,甚至冻死。
为此,人们还把低温的冷冻形象地分为“倒春寒”、“寒露风”。1976年3月下旬至4月上旬,江南广大地区出现了明显的“倒春寒”,湖南、广西、广东、江西、福建五省因为烂种而损失3.5亿公斤种子,占播种量的1/3。
(6)酸雨、大雾、阴雨等:
酸雨是一种严重的环境问题。由于地面上的二氧化硫(SO)和氧化氮 2(NO)被大量地排放在空中,经过水汽凝结后,形成带有硫酸(HSO)和硝 2 4酸(HNO)的雨,再降落到地面上,严重地威胁着人类。
3
酸雨导致了湖泊中的鱼类成批地死亡,浮游生物、藻类减少。日本石弘之指出,欧洲从60年代起,湖面1公顷以上的85,000个湖泊中,有21,500个受到酸雨的影响。其中11,000种鱼类及水生昆虫骤减,2000种完全灭绝。酸雨还使一些农作物、树木的根茎受到侵蚀,不少森林死亡,农作物减少。联邦德国的一份调查表明:由于酸雨的影响,该国森林受害面积曾经在一年中上升了9.7个百分点。一些建筑物也未能脱离苦海,像印度的大理石建筑泰姬陵、雅典城亚克罗波利、我国的乐山大佛,都因为酸雨的影响,已经面目全非了。
大雾,是贴近地面大气层中的水汽凝结或凝华而形成的微小水滴或冰晶。雾分平流雾和辐射雾两种。辐射雾,由白天蒸发的水汽在晚上降温时产生,它一般在晴天出现;而平流雾,是由暖湿空气在推移过程中,遇冷而形成,它在一天的任何时候都可以形成。
大雾的危害不仅仅限于使交通受阻,如我国华北地区曾出现的一次罕见大雾,破坏了高压输电线路的瓷瓶绝缘,造成大面积断电事故。而酸雾的出现,更叫人触目惊心,1952年12月5日,伦敦地区发生了硫酸雾,雾中二氧化硫浓度积聚越来越高,这种状况一直持续了三天,直到12月8日才结束。
这次大雾使近4000人死亡。
洪水泛滥
在全球范围内,每年都有不同程度的洪水发生,1995年更是屡见不鲜,连续不断,而且范围大,灾害重美洲新年的钟声刚刚敲过,隆冬季节多雨的美国加利福尼亚州遇到了连续9天的暴雨,出现了近10年来最严重的洪水;3月再次遭受洪水的袭击,损失20多亿美元,为本世纪以来加州范围最广、损失最大的洪涝灾害。在美国南部和中部,5月份暴发的洪水也造成了近40亿美元的损失。6月,加拿大西南部的艾伯塔南部因暴雨和落基山融雪,河水高出正常水位9.8米,造成该地近百年来最严重的洪灾。南美洲巴西的圣保罗和萨尔瓦多也先后因暴雨洪水引发泥石流和山体滑坡,淹没了附近居民聚集区,数十人死亡。哥伦比亚暴雨引起塌方,至少造成10人死亡。
欧洲新年伊始,冬雨颇丰的西欧受到一场极为严重的暴风雨袭击。创法国降水量150年来同期最高记录, 4万多间房屋、800多条道路被毁。英国北部3条主要河流及其支流水位都创本世纪最高记录。莱茵河在德国的水位达10.67米,为6年来最高记录。在荷兰,水位高出海平面16.63米,为40年来最高位,25万人被迫撤离。这次洪水不仅给西欧造成人员伤亡,也带来巨大的经济损失。挪威6月的非季节暴雨和高山融雪,电引发了125年来最严重的洪水。
亚洲是每年全球洪水发生最多的地区,1995年尤为频繁。
朝鲜8月份受到近百年未遇的巨大洪水袭击。520多万人被困,68人死已,据报道,经济损失达150亿美元。雨季到来之前,孟加拉和印度等国已多次受热带气旋袭击。其中盂加拉国的洪涝是1988年来最严重的,全国有一半地区、700万人处于洪水的威胁中,500多人死亡或失踪。
在东南亚,由于连续暴雨,中南半岛河流水位猛涨,红河、湄公河、湄南河流域洪水泛滥,越南170多人丧生,南部最大产粮区一片汪洋,约20多万间房屋被淹,造成严重毁坏;柬埔寨2900多公顷良田被毁,数百户无家可归;泰国的这一年是12年来洪涝灾害最为严重的一年,死亡近200人,毁坏良田50万公顷。印度尼西亚上百人死于洪水。损失最为严重的是菲律宾,洪水和台风造成约2500人死亡和失踪,无家可归者达100多万。
热浪横行
1995年另一个肆虐全球的灾害是热浪。
南亚每年有一个热季,时有热浪天气出现。但是1995年的热浪持续时间长,从4月下旬至6月中旬近2个月里,整个南亚饱尝着热浪之苦。印度北部不少地区高温曾达50℃左右,首都新德里达46℃;巴基斯坦中南部达50℃,南部的贾科巴巴德达53℃;孟加拉、尼泊尔也受到热浪的危害,南亚约有近700人在酷热中死去。高温伴随着干旱,农作物受到了严重损失。
7月中旬,美国中西部和东部受1980年以来最严重的热浪袭击,许多地方温度高达历史记录,芝加哥13日气温高达41℃,酷热天气使得700多人死亡,经济损失也很严重。
随后,热浪又越过大西洋闯入欧洲,中欧与南欧一些国家和地区出现持续高温,西班牙许多地方气温超过40℃,塞尔维亚和科尔瓦多达45.6℃,意大利大多数城市温度升至35℃,米兰38℃,法国巴黎气温曾升到36.2℃,为1976年以来最高值,即使在不太热的荷兰,气温也达35℃。
1995年在北美东海岸飓风特多,被命名的热带风暴已达19个,是50年来风暴最频繁的一年。特别是8月份以来,极具威胁的风暴接踵而来,美国南部、墨西哥、加勒比海及其附近地区死亡137人,损失77亿美元。强度和危害最大的Opal飓风10月上旬初横扫墨西哥湾沿岸及美国佛罗里达等州时,最大风速达83米/秒,涌浪高4米,59人丧生,数万人受害,这也是1992年以来袭击美国本土最强的风暴,损失约30亿美元。飓风Roxanne肆虐墨西哥,它是一个月内第3个袭击当地的飓风,最大风速60米/秒,16人死亡,42人失踪,30万人无家可归。加勒比海连受飓风影响,也给背风群岛带来严重灾害,死亡约20多人,许多居民住房被夷为平地,数百人受伤。
全球气候性灾害事件频繁发生,原因是多方面的。最近,美国托马斯·卡尔等高级科学家利用美国1910年以来48个州的气候资料进行的研究表明,70年代后期以来美国极端恶劣气候现象有明显增加,可能是温室效应造成的的一种迹象,但这个结果是否对全球有普遍意义,还有待于进一步的研究。
汛期的气象灾害
暴雨频繁
1995年6月中旬后期,副热带高压急剧北移,华南前汛期结束。从6月下旬至7月上旬长达半个月的时间内,强降雨带一直稳定在江南北部,湘、赣、浙、苏南和皖南持续出现暴雨或大暴雨,暴雨过程在半个月内竟达6次之多,黄山曾出现253毫米的日最大降水量。上述各省这半个月的降水总量一般在300~500毫米,部分地区达以600~900毫米,较常年同期偏多2至5倍,湘、赣部分地区的降水量创了建国以来的最高值。
由于降水时段集中,雨量大,致使江、河、湖泊和水库的水位持续上涨,居高不下,鄱阳湖出现建国以来最大洪水,洞庭湖和长江下游干流出现建国以来第二大洪水。
暴雨洪水造成的灾情是惨重的。仅湘、赣两省就有173个县、市受灾,380余万人一度被洪水围困,650人死亡,房屋倒塌,企业停产,农田被淹,铁路中断,两省的直接经济损失达330多亿元。
旱灾肆虐
局部地区洪涝、大范围干旱是西北地区最常见的自然灾害。但本年度西北地区东部的异常干旱却是多年罕见的。例如:一些地区5月的降水量一般不足20毫米,不少地区滴雨未下,陕、甘、宁、青的一些测量站出现了建国以来月降水量的最小值。进入6月,这些地区的降水仍持续偏少,旱情持续发展。
冬春连旱,春夏连旱,导致西北一些省区灾情严重。仅陕西省受旱面积就达3200万亩,210万人饮水困难。地处渭水之滨的古城西安曾一度供水紧张。
暴雨成灾
7、8月间随着副热带高压继续北移,江南连续暴雨结束,雨带开始出现在北方地区。
7月24日~8月8日,辽宁、吉林中部和东部连续出现大到暴雨,局部地区出现大暴雨。降雨总量一般有100~300毫米,部分地区达350~550毫米。
受连续暴雨影响,辽河、鸭绿江等河流出现历史上罕见的特大洪水,部分城市、乡镇和大片农田被淹,公路、铁路多处被冲毁,一批工矿企业被迫停产,死亡和失踪200余人,经济损失严重。
热带气旋
1995年的热带气旋季节前期,西北太平洋热带地区异常沉寂,到7月底还少有热带气旋活动。但从7月底起南海海面却经常波滔汹涌,热带风暴频频发生,而且不时光临华南沿海地区。
7月底以前,西北太平洋海域只有3个热带风暴生成,而这3个热带风暴都未在我国登陆。
在7月底至8月的30余天时间里,先后有7个热带风暴在南海和吕宋岛以东洋面生成,其中有6个相继在我国登陆,而且除1个登陆华东的浙江外,其余5个均登陆华南。频繁登陆的热带气旋所伴随的狂风暴雨,给广东、海南等省造成了很大的经济损失。这期间,在我国登陆的热带气旋超过常年平均数2倍,是建国以来同期最多的。热带气旋在短时期内频临华南沿海,也是常年同期罕见的。
热浪发威
盛夏难得一见的大范围强热浪8月下旬至9月上旬在长江流域涌动,人们惊呼“秋老虎”来了。
热浪自8月27日始于闽北、浙南,以后逐日向西扩展。至月末,华南北部、江南、江淮以及四川东部均处在35~37℃的高温区内,进入9月高温区又扩展到了黄淮地区和汉水流域。重庆等地曾连续出现40℃以上的高温天气。
高出常年同期平均值4~5℃的罕见高温,加重了一些地区的干旱。9月上旬末,伴随着较强冷空气南下,副热带高压急剧南退,“秋老虎”天气才宣告结束。
值得一提的是当长江流域经历着高温煎熬时,华北等地却处在连绵的低温阴雨之中。在卫星云图上,呈现出这样一幅几乎恒定的图像:南方上空晴空万里,而在这个近乎椭圆形的晴空区的北侧,华北、西北地区东部却被浓密的云系覆盖着。相邻的两个地区,却经历着两种绝然不同的天气。
气象减灾
频繁的气象灾害,给世界人民带来了巨大的痛苦;面对洪水、暴雨、台风、冰雹的横行霸道,肆意破坏,人类并没有坐以待毙。科学家们早就行动起来,一直在寻找对策。现在对于各种类型的气象灾害,人类还没有完全能够驯服它们的能力。但我们已经和正在用高新科技手段,提高着预报水平,争取把灾害减少到最低程度。在这之中,对天气现象的监测、预报,以及各种防范措施,立下了卓越的功勋。
如对付突发性的强对流天气,暴雨、冰雹、龙卷风,气象雷达就可大显身手。一般六小时一次的气象监测和三小时一次的卫星探测,很难捕捉到这种突发性强对流天气;而雷达通过连续的跟踪观测,根据回波中心的强度、云顶高度、面积、移向移速的变化。就可以推断出即将出现的天气内容,对是否冰雹天气、暴雨天气、阵性降水都分辨得清清楚楚。多普勒雷达还能探测大气中风与温度的分布情况。近些年来,由于电子数字处理系统的应用,雷达更是如虎添翼,这使短期天气预报水平大为提高。
1990年5月28日,云南省云溪地区对上午8时和10时观测的两次雷达回波资料进行分析,成功地预报了“华宁县的一次强暴雨天气”。当地水利部门积极采取行动,将一些水利施工的现场进行有效防范,而使数百万元的财产免遭“毒手”。据说,从短时天气预报中获得的收益数字惊人。美国农业每年可得7400万美元,英国可得650万英镑;在能源上,美国每年收益3930万美元,英国可获40万英镑;在社会公益与安全上,美国每年竟获利3.1亿美元,英国也有380万英磅。
气象卫星的监测水平就更高了。三十多年来,由于卫星遥感技术的运用,对热带气旋、暴雨洪水、寒潮、干旱,甚至森林火灾、病虫害的监测都获得了相当大的成功。
气象卫星的云图可以清楚地显示台风发展过程的全貌,及其移动的趋势、路径、强度等。1981年,卫星云图准确地显示出8107号台风将向西北方向移动,纠正了其他资料预报的西行错误结论。据此,预报员作出了台风将在福建、浙江南部登陆的正确预报。再如1986年的8607号台风,由于提前72小时作出登陆广东的准确预报,使损失减少了十多亿元。气象卫星对台风的准确监测、也避免了一些机毁人亡的空运事故。如1981年8月31日,卫星云图显示出中日航线受台风的影响可能性很大,值班人员立即向有关部门建议取消次日的航班,确保了旅客的飞行安全。
气象卫星也能监测暴雨。在卫星云图上,一个个密集的白亮云区就是暴雨。1983年7月下旬,汉江上游水位猛涨,气象工作者根据云图反映,多次作出正确预报,有关领导在暴雨滂沱的7月31日做出了撤离陕西安康城居民的果断决定,大大地减少了人员伤亡。
对寒潮等冻害的监测,卫星也表现得得心应手。气象卫星通过红外云图资料,能获得寒潮移动的方向和进程。美国就据此为南部佛罗里达州柑桔园的种植提供了大量有实用价值的信息。据估计,该州光柑桔种植一年就可以节省4500万美元。
对于干旱的监测,卫星也可以做到。目前,全世界沙漠化问题严重。我国荒漠化面积已经接近国土的1/5。卫星可以提供沙漠动态的数据,为防沙治沙作重要参考。
卫星的监测还涉及到一些特殊灾害,如森林火灾、地震预报等。我国在1987年5月6日~6月2日的大兴安岭林区的大火扑灭过程中,卫星监测就发挥了重要作用。在整个灭火战斗中,国家气象局向森林防火总指挥部提供了七十余幅反映林火发展情况的云图。1992年5月,国家卫星气象中心又观测到大兴安岭有高温区,实况是确实在扑灭火灾。
卫星的监测,仅从减灾方面来说,电可以把对海水的监测、对植物病虫害的监测、对旱涝面积的估算包括进去。气象卫星利用冰、水的不同反射率及温度的不同特性,可以测出海冰的分布和移动情况。我国从80年代初开始,就对渤海黄海北部的海冰分布、漂移速度、外浮位置进行了卫星跟踪指出了海冰位置,帮助渤海石油公司的两艘钻井船脱离了险情。
卫星遥感技术发展到监测植物病虫害,的确是件了不起的事。农作物的群体绿叶面积指数、生物量及叶绿素含量,能反映作物的长势,对病虫害和冻害也有不同程度的反映。据说,瑞典的科学家们曾经根据卫星图片资料,提前14天准确地预报了森林病虫害。在其没有蔓延开来时,就施加了控制。
再如加纳,卫星图片还曾被作为灭煌的依据。说穿了这其实不难理解:蝗虫一般在地下排卵,而虫卵又对土壤水分有特定的要求,因而只要根据土壤温度分布的分析,就可以找出蝗虫的滋生之地。
我国从80年代中期就开始利用卫星对各种作物病情、长势、病虫害作了研究。如1987年春,气象卫星云图揭示出河南省红蜘蛛、吸浆虫、白粉病等少数病虫害。1991年2月,江苏省气象局根据18号气象卫星的遥感资料,指出受灾最严重的区域是灌南县,这为当地及时自救提供了宝贵的信息。
在估计旱涝面积方面,气象卫星根据的是光谱特征的改变、陆地绿色植物的反射特性差别,通过接收辐射测量值来进行工作的。早在1986年,吉林省东部辽河流域发生大暴雨时,四平市气象局根据8月4日的气象卫星遥感资料,计算了受涝区的面积。1988年河南省遭受罕见的大旱,卫星云图也及时地提供了其地理分布情况。
但是减灾是一项十分复杂的社会系统工程。它涉及到灾情所致的方方面面。减灾,从整个过程来看,它包括监测、预报、信息传输、防御和治理、抗灾、救灾等等环节;按阶段来分有灾前防、灾中抗和灾后救。气象灾害是自然灾害中重要的一部分,利用气象技术减灾,如前面所述的监测、预报等,在这之中担负着首当其冲的重要责任。在我国,各种气象监测站网星罗棋布,监测和预警系统初具规模,但是,我国作为世界自然灾害最严重的国家之一,任重道远,比起一些发达国家来,由于人力、物力、科学水平等原因,我国仍存在着一定的差距。
比如说美国国家灾害报警系统就很完善。美国政府在五十多个州设立了350个电台,每个广播范围为70公里,这种报警系统已经覆盖了全国人口的百分之九十五。为了提高灾害预报水平,每个预报台都能接收覆盖美国及邻近区域的同步气象卫星云图图片,处理各地气象中心电传的天气资料,再用电子计算机进行数据预报。
我国近几年来,气象事业的发展与成绩不容忽视。国家每年用于气象事业的投入与取得减灾增收经济效益比为1∶20。同时,因为减灾科技的发展,灾害所造成的人员伤亡大为减少。如1991年特大洪涝造成730人死亡,比历史上同样灾害造成的死亡人数少3~4倍。
现在,气象部门积极贯彻“以防为主”的指导思想,做好监测、预报、信息传递和处理工作,为保护人民的生命财产安全服务。全国各地现有2600个气象台站业务体系,配有二百多部气象雷达,77个卫星图接收点,900个警报发射台,三千多部甚高频电话,大大地提高了对付灾害的能力。
未来的国际合作
许多人都听说过“国际减灾十年”这个名词。它的全称是“国际减轻自然灾害十年”,最初由美国地震学家、国家自然科学院院长法兰克·普功斯,在1984年的第八届世界地震工程会议上提出来的。他指出:要保障世界人民生命财产安全,可以通过政治和科学技术两条途径来实现;而科学技术这条路径就是指用最新科技成就来减轻各种自然灾害造成的损失。1982年12月,在美、日等国家联合倡议下,联合国第42届大会通过3169号决议方案,决定把1990年到2000年定名为“国际减轻自然灾害十年”。
“国际减灾十年”活动的宗旨是:通过一致的国际行动,来减轻诸如地震、风暴、洪水、火山喷发、蝗虫等自然灾害造成的各种损失。“国际减灾十年”这一活动同世界人民的愿望一致。因为虽然人类对自然灾害的认识在不断深化,对付自然灾害的能力在不断增强,但是毕竟各国的方法、技术、手段各不相同。因此加强国际合作,进行技术转让,提供各种援助,有助于世界各国、特别是第三世界的抗灾救灾。
“国际减灾十年”活动能够调动各种积极因素,推进世界减灾活动的开展。我们知道,国家是有国界的,但自然灾害是没国界的,气象灾害更是如此。据有关资料表明,全球每年发生10万个风暴,一万多次洪水,数千次飓风等;如果,将全球的力量有效地集中起来,那么,全世界对气象灾害的活动规律的认识将会深化,对灾害的监测预报能力也会增强。
1987年,“世界气象日”的主题是“气象——国际合作的一个典范”,它表达了世界人民对付气象灾害的共同心声。我国在这方面也做出了自己的贡献。从1978年开始,我国参加了亚太经济理事会和世界气象组织的台风委员会,这些组织的有关职位还由我国气象学家担任过。我国还与世界多个国家进行了合作和交往,并引进了一些高新技术,它们都加快了我国的气象现代化建设。同时,我国和第三世界国家还进行了一些合作,使我国同第三世界国家在气象领域的友谊与联系得到加强,提高了我国的国际声望和影响。
但是在气象方面的合作还不能只局限于气象灾害。不管是从眼前来说,还是从未来的角度着眼;不管是从目前世界环境问题的角度来看,还是从日后的世界气候变化去讲,人类都应该认识到其形势的严峻性。
世界环境问题中有一项是关于全球气候变暖、大气污染加重的。从上个世纪末起,全球的平均地面气温就有上升的趋势,本世纪80年代全球平均地面气温比过去任何一个10年的平均值都高。可是世界人口仍在不断膨胀,石化燃料仍在急剧增加,这使大气层中的二氧化碳和其他微量气体越积越多,产生了严重的“温室效应”,导致全球气温上升1~2℃。可别看这小小的1℃、2℃,它会使南北两极冰原融化、海平面上升,到时候世界上恒河、尼罗河、密西西比河几个大三角洲会被海水淹没;太平洋和印度洋上的一些岛国如马尔代夫会不复存在,甚至美国的纽约曼哈顿摩天大厦也将浸泡在水中。
另外,地球上的一些动、植物会因无法适应气温变化而归于灭绝。世界性干旱会加重,特别是沙尘暴会更加凶猛,强烈的飓风也会因温室效应而变得更加猖狂,森林火灾也将更加严重。而且最令世界恐慌的恐怕是医学家们的断言:随着全球气温上升,气候变化异常,啮齿动物、昆虫、细菌、原生动物、病毒繁衍迅速,大批的有益天敌死亡,人的抵抗能力和免疫能力下降,一些瘟疫将对人类造成严重的威胁。这绝对不是耸人听闻的妄言,你看,在最近几年中: 1991年,拉丁美州霍乱流行,50万人受感染,5000人死亡。
1993年,美国西南部汗塔病毒暴发,近百人感染,45人死亡; 1994年,印度北部鼠疫流行,63人死亡,物质损失20亿美元。
1995年,登革热在拉美蔓延,14万人受染,4000人死亡。
再看看酸雨。联合国环境计划署(UNEP)等许多国际性机构和研究机关发出警告:酸雨已成为本世纪内最大的环境问题之一。从本世纪60年代北欧开始出现酸雨以来,现在已经扩展到欧洲、北美洲,以及日本、中国、印度、巴西等发展国家。
另外还有因为气候变化、人类人为因素影响导致的一些新环境问题,如臭氧耗竭、森林资源减少、生物物种灭绝、土地沙漠化、淡水资源不足、水污染加重、海洋环境恶化、有毒化学品危险废物剧增等,而这些也反过来影响了天气和气候的变化。
为此,一些国家的有识之士忧心忡忡,并提出了一些有效对策。如美国面对温室效应问题,1989年环境保护部制定了一系列计划,这些计划包括:(1)用燃烧更为干净的燃料如甲烷等代替汽油,降低汽车的二氧化碳排放量;广泛采用公共交通运输,限定所有新车最低燃料利用率为每加仑80公里,最终以电动车辆代替。
(2)对所有矿物燃料消费者征收二氧化碳排放税。
(3)回收旧废纸张、玻璃、金属,利用秸秆和垃圾作燃料,以节省能源。
(4)发展大型“能种植园”,栽种速生树种。这些树种燃烧时不会使大气中二氧化碳含量增加,因为它们燃烧时释放出来的能量,与生长时取得的二氧化碳量相等。
(5)大力推广利用太阳能。
(6)停止对热带雨林的滥伐。
据推测,综合采用这些对策,可使全球增温率下降60%,大约可以达到每一百年上升1℃的水平。但是这些措施光靠一个国家是难以奏效的,因为只有全世界一起努力,温室效应才有可能得到控制,而不致于使二氧化碳等温室气体能在大气中从一个国家传到另一个国家。这些问题终于引起了世界各国政治家和政府决策人员的关注,最后在1992年导致了气候变化框架公约在巴西里约热内卢的签署。
这个气候变化框架公约的签署不是轻而易举的,因为在1990年11月,第二次世界气候大会的“部长宣言”,就已经对此公约的谈判作了准备要求;1990年12月,联合国第45届大会作出了“为了人类的现代化和未来保护气候”的212号决议。整个谈判过程历经了15个月,我国代表团在谈判中起了很重要的作用。
该公约认为,最终目标是将大气温室气体的浓度稳定在防止气候系统受到危险的人为干扰的水平上。它的第三条原则认为,过去和现在所增加的温室气体主要源自发达国家,因此它们对全球气候变化负有主要责任,所以应该率先采取行动。
该公约的第四条第一款要求,所有缔约国应向缔约方会议提供关于二氧化碳等所有温室气体人为排放和清除的国家清单;第二款要求缔约国要制定国家政策,确保温室气体人为排放量降到1990年水平;第三款要求发达国家缔约方提供资金,等等。
这个公允的谈判过程充满了妥协与斗争。西欧国家由于核能和水能使用比例很大,建议“到2000年发达国家应把温室气体总排放量降到1990的水平,而且到2005年再降低20%”。但美国却极力反对。因为美国对此要付出数万亿美元的巨额资金用于改造能源结构。
关于气候变化框架公约签署了,但能否得到实施还要看各国现实的努力。据说,欧洲共同体已经决定,增加对汽油的附加税每桶三美元用以治理气候。但是不管如何,不要说面对温室效应,就是对付气象灾害等一般性自然灾害,国际合作已是一种挡不住的趋势。
探测天气提高认识
探测大气
先要澄清一个事实,就是说,我们这儿谈的大气,主要是指地球最底层的大气。具体地说,就是地面以上的约十多公里距离的大气。在赤道地区要厚一些,约有17~18公里;到南北两极要薄一些,约7~9公里。这个底层叫对流层。对流层,就是指空气对流运动强烈。大气中的各种物理状态和现象,如风、云、雨、雪、霜、露、虹、晕、雷、电等,都发生在这一层。
那么大气是什么呢?大气是一种无色、无味的混合气体,它在我们周围到处存在。可以说,它就是空气。过去打过一个谜语,叫“看不见、摸不着、离不了”,指的就是它。说大气是混合物,一点也没有错。地球上大气按重量来计算,其中氮占75.5%,氧占23.1%,氩占1.3%,二氧化碳和其他气体占0.01%。不用说,这是指大气的化学组成。从这个组成我们可以了解到,空气中氧约占四分之一,正是因为它,才使我们人类在这小小的环球上得以生存,一直繁衍到今天。大气对于我们的生命是多么重要啊!
是的,大气不仅对于地球现存的五十多亿生灵有着至关重要的作用,在我们生命的演化史上,大气还立下过汗马功劳呢。你看,地球上原始生命起初只在太阳辐射达不到的深水中出现,这些生物体后来发展为吸收金属氧化物来维持生命的低等生物。氧介酶出现后,生物转入到浅水中活动,地球原始大气中的二氧化碳溶入水中,生物借此增多。当含氧量增到约今天的1%时,高空大气的臭氧层出现,它吸收太阳紫外辐射,保护了地球原始生命,于是浮游生物,多细胞生物大量产生。当大气含氧量达到今天的三倍时,恐龙这一爬行动物出现。有人认为,由于恐龙产生的二氧化碳太多,植物来不及放出足够的氧气,最后导致恐龙等爬行动物灭绝。又过了一段时间,适应新气候的哺乳动物出现。约数百万年前,人类产生。看来,没有地球的大气,就不会有人这一高级动物的产生,更不用说今天。看看那荒芜的火星,赤裸的月球,寂静的金星,我们人类是多么幸运埃但是,我们今天要探测大气,还不仅仅是由于大气过去和现在给过我们人类某些恩惠,我们还同形形色色的大气现象打交道呢!进一步说,我们生活在形形色色的大气现象之中,我们能不了解它们吗?你知道,云,有的象重重叠叠的山峰;有的象成片成片的瓦块,我们通过探测知道,它们其实是空气在上升运动时,在有凝结核的条件下形成的小水滴、小冰晶。再如风,有时轻风拂面,水波荡漾;有时北风凛冽,寒气刺骨;有时阴风怒号,浊浪排空,我们通过探测知道,其实它是空气的水平运动。我们也知道,雨、雪就是变大后从空中掉下来的水滴、冰晶;雷电其实是积云雨中正、负电荷中心之间,或者云中电荷中心与大地之间的放电现象,等等。因而通过对大气的探测,再经过研究,人们知道了某些天气现象的成因。
特别有意思的是,人们对一些怪现象,如虹、晕、华、宝光也有了新认识。虹是阳光经过雨滴的折射和散射后产生的彩色光带,主要出现在与太阳相反的方向上;晕是太阳光线照射到冰晶上发生折射形成的彩色光环;华也是一种在太阳周围云层上呈现的多色光环,它由太阳光线经过小水滴或冰晶衍射而形成;还有宝光,也是一种光环,它包括观察者的幻影和以幻影头部为中心的光圈。可以说,这些奇异的自然景观无非是大气在某一时期、某一地点的“艺术杰作”’而已。懂得了这个道理,我们就不必把它们看成什么神秘的“雀桥”、“假太阳”、“佛光”等。我们完全可以相信,这并非是什么妖魔鬼怪在起作用,它们背后的指使者就是大气。明白了这些神奇现象的成因,对于我们破除封建迷信思想、提高科技意识、树立唯物主义世界观,具有深远的现实意义。
不仅如此,探测大气的性质,了解它们的活动规律,对于我们把握各种天气现象,进行各种工农业生产,还起一种防患于未然的作用。暴雨如注,洪水如虎,台风挡不住,没有预先的预测,人民的生命财产只会毁于一旦。
然而,暴雨、台风、洪水,还有霜冻、冰雪、大雾等,都不过是大气在特殊条件下演绎的花样而已。如果我们能及时有效地跟踪和预报各种天气形势,就常常有截然不同的结果。如 1989年8909号和8923号台风在浙江省登陆,由于预报准确及时,使各级领导和防汛部门事先做好了充分准备,估计减少经济损失6~8亿元。再看别的国家的一个例子,1970年11月12日,孟加拉国大风暴潮造成30万人死亡,后来装备了气象卫星,建立了大风暴警报系统后,1985年遭受同样规模的风暴潮,却到目前为止,人们不仅对于各种灾害性天气可以监测和预报,部分非气象性自然灾害,如地震,通过气象卫星的监测,预报水平也有所提高。原来,地震前有各种大气异常现象,比如地光、地气、增温、就可以捕捉到地震的蛛丝马迹。如 1989、 1990年、 1991年,我国国家地震局利用气象卫星的遥感红外线数据,成功地进行了大同、阳高、北京地区、台湾等地的地震预报。我国科学家甚至还发现了1991年5月日本云仙台火山和6月菲律宾比纳图博火山的喷发前兆,这些都证明了我国对天气临视和预报的准确程度是相当高的。
当然,科学家们不仅利用大气来探索天气的变化,还能预测未来的气候变化。科学家们通过对地球大气气温的研究发现,目前全球平均地面气温有上升的趋势,大气中的二氧化碳、甲烷等温室气体的浓度在不断增加,这就不得不使地球大气增温。大气增温后会使全球的气候条件发生极大变化,到时候南极冰山融化,海平面上升,干旱面积加大,物种灭绝等等,一系列不容乐观的结果等待着我们。而且,科学家们还发现,南极上空的臭氧层趋于衰减,这会使全球大气臭氧保护层变薄,形成一个巨大的空洞,届时大量的太阳紫外线会对地球生物产生伤害。这就使我们不得不保持高度警惕,及时采取防范措施,以免悲剧发生。
总而言之,通过对大气的探测,我们了解了我们生活的大气环境,弄清了各种天气现象的规律,进而预报各种天气,提高了应付自然灾害的能力。
对大气本身的探测,有利于认识未来气候的变化形势,从而有助于我们采取有力措施,改善我们的生存环境。
观测形态走势
前面说大气探测是如何如何重要,那么到底要探测什么呢?大气现象复杂多变,大气组成多种多样,到底探测什么为好,是头发胡子一把抓吗?不是,这儿有两种观测。
一是常规观测。常规观测主要包括温度、湿度、气压、风力、风向等观测项目。可别看只有这几项基本因素,它们却分别反映了大气的热力状态和运动状态。
气温的高低表明了气体的冷热程度。测量气温的仪器叫温度表。和测量人体体温的体温表一样,它是利用热胀冷缩的原理制成的,如酒精最低温度表和水银最高温度表;也有根据导体、半导体电阻随温度变化原理制成的电阻温度表;或者根据温度不同、电流不同原理制成的温差电偶温度表。另有一些测温元件,如铂电阻、热繁电阻等。
气压是地球大气圈的大气对地球表面和周围大气产生的压强,测量气压的仪器常用水银气压表。
湿度是指大气中所含水汽多少的量,测量湿度的仪器有干湿球湿度表和毛发湿度表。干湿球湿度表实际上由两支温度表组成,其中一支绑有纱布,很显然,是用水分蒸发导致温差变化的原理来反映湿度的。
二是特殊观测。常规观测是每个气象站在每天规定时间,按照一定程度进行对规定内容的观测。特殊观测不同于常规观测,这主要反映在观测内容和观测位置上。一方面,特殊观测要观察目前变化比较大、并可能对未来气候产生很大影响的一些内容,如二氧化碳、甲烷、臭氧、酸雨、气溶胶粒子,这可以称为大气化学观测;另一方面,特殊观测主要把观测范围集中在地面以上一公里内,这叫边界层观测。大家可以猜到,这主要是因为边界层与我们生活生产活动太密切。
特殊观测的历史并不长,我国只有二十多年的经验。由于特殊观测对所涉及的知识、仪器精度、观测条件要求很高,所以难度很大。我国对大气的化学观测有一定的成果,如酸雨曾经在部分省市进行专题观测与研究,一个酸雨观测网已经建成。据悉,我国与美国、澳大利亚等国还展了一些特殊观测的合作,成果显著。
特殊观测是适应新形势需要而产生的观测,它在未来将变得越来越重要,一些新型的观测项目会增加。因此特殊观测会得到加强,但这并不意味着常规观测就不重要。事实上,我们的天气预报的主要根据仍然来源于常规观测。可以说,将来这两种观测会互为弥补,相辅相承。
警惕大气
地面观测网
地面观测网由各地地面气象站、自动气象站、气象观测塔等组成。
(1)地面气象站:
地面气象站有气象观测员连续不断地对天气进行观测。他们用眼睛观测各种气象要素,如云量、能见度、雨量、风向、风速等。一般地说,这只能得到估算的数据参数,经验便显得很重要。此外,他们还用各种仪器设备来测量大气的温度、湿度、气压、风力等。在这里,温度常用摄氏度(℃)表示,湿度常用相对湿度、水汽压或露点湿度来表示。气压计算单位是百帕。
风向用方位来表示,风速要在10米高的风杆上测量,其单位是米/秒。地面气象站观测项目很多,雨量、蒸发量、日照量、地温、积雪、太阳辐射等都应包括在里面。要强调的是,地面气象站的观测方法很统一,它们都要参照联合国气象组织和国家气象局制定的《观测规范》。观测的仪器性能、规格和计量单位也要符合国际标准。不用多的解释,大家已经明白,这无非是想保证观测结果的准确性和代表性,以便于比较。
自动气象站
自动气象站就是没有人工操作、完全由仪器自己完成测定地面各气象要素的全自动气象站。它们常常被安置在高山、海洋、沙漠、高原上。由于地球表面面积广大,人力物力有限,建设地面气象站的数目不可能很多,自动气象站弥补了地面气象站的不足。
自动气象站发展到现在已有三代。第一代研制于本世纪50年代末,当时它只能测量温度、湿度、气压、风力、风向、降水等少数几个要素。60年代中期,由于半导体元件和脉冲数字电路的普及,第二代自动气象站产生。它的感应元件能观测云高、降水、辐射总量、雷暴等。但是,这种气象站不能自动处理观测资料。70年代后,自动气象站已发展到第三代,电子计算机和卫星通信技术的兴起,使自动气象站自动化程度大为提高。
目前,全世界投入运行的自动气象站有几千台。有一些国家还建立了自动气象站网系统,称之为自动气象遥测系统。这种系统由中心站和野外站组成,中心站控制着野外站,野外站的主要任务是观测,它由铁塔、传感器、电子线路等组成。我国在“七五”期间就研制出了自动气象站,它们分别安装在内蒙古、青海等地,定期通过静止卫星向地面接收站发送各种气象信息,效果良好。
但是,自动气象站并非完美无缺。它需要定期检修,它的观测项目有限,而且其准确性和可靠性赶不上目测,所以,它只能是一种地面气象站的辅助物。未来的气象站或许是两种气象站的有机结合,就像计算机不能完全代替人一样,将来的气象站只会模糊两者的界限。
(3)气象观测塔:
气象观测塔是一种特殊的气象观测装置。前面说过,特殊观测不同于常规观测,而气象观测塔恰好是为了特殊观测而设的。
气象观测塔常常是用来观测大气边界层的有效工具。其实,用于边界层探测的东西很多,如系留气球、低空探测仪、特殊飞机、声雷达、激光雷达、红外和微波探测器等。但它们的观测效果有很大的局限性,主要是间断不连续,而且因为不是直接探测,结果需要核对,所以人们对之并不十分满意,而气象观测塔却有这方面的优势。
用气象观测塔对大气边界层的观测,作为特种观测来看,目的很明确,其了解的是地表几十米至上千米这一范围大气的温湿度,以及高度分布随时间的变化状况。这种观测能为数值天气预报提供不同高度的准确数据。另外,它对高层建筑设计也给出了一些参考资料,因为不同高度的建筑对风力的考虑不容忽视,能否节既省建设资金,又提高质量,是建筑设计的重要问题。
气象观测塔,有专一性质的,如我国1979年在北京北郊建立的高约325米的专用气象塔;也有多用途的,如一些电视塔、广播塔、导航信号发射台,气象观测只是其“业余”任务的一部分。不过,这些塔身都是钢筋混凝土筑成的,升温快,降温也快,为了避免观测仪器受塔体的影响,一般仪器感应部分都离塔体较远,形成水平伸臂。所以,这些塔从近处看去,像全身长满了长长的刺似的。
空中观测员
这儿的空中观测员可不是地面气象站的观测人员,它们是在空中进行各种气象探测的工具。从空中对各种大气现象进行探测,改变了过去气象观测的单一形式,呈现出一种立体的效果。
(1)风筝:
风筝能够飞上天,当然可以用于大气探测。据说,大约在1749年时,携有温度表的风筝就到达了云层深处进行过温度测量。大家熟悉的科学家富兰克林也于1725年把风筝升到了雷雨之中,从而证明了闪电与摩擦生电一个道理。所以说,风筝在大气探测史上有过功勋。风筝最大的好处在于它设备简单、造价低廉、上升容易,但是它的上升高度有限,充其量不过三千多米。
再者风筝容易断线,在地面建筑物和丛林多的地方还不能施放。这样一来,到19世纪之后,风筝就只作为玩具形式而存在了。
早期的气球充满了热空气,后来为了安全,由乳胶制成的气球出现,灌入适量的氢气,借助空气的浮力就可以上升。现代的载人气球高度已达三十多公里,是在本世纪60年代创下的纪录,对于探测大气的风筝高度来说,是个不小的突破。气球用于大气探测大约是在1893年,当时法国使用的是橡胶做成的气球,上面携有气象仪器升到了16公里的高空。早些时期,气球上面的气象仪器需要气球破裂,然后摔下来后才能获得各种气象数据;而现代常常使用无线电探空仪器,无需回收。
气球探测可以分成以下几种:
一是系留气球,又称风筝气球。它用绳索维系在地面上,其形状有的像船,有的像球。气球上面都带有测量温度、湿度、风向、风速的仪器。这些仪器要么用无线电发送测得的数据信号、要么直接采用有线传输的方式。系留气球的高度可以由绳索控制,不过一般只有几百米,它主要用于低空大气的探测。
二是探空气球、这种气球下面悬挂着探空仪。探空仪带有温度、湿度、气压三个传感器、转换器和发射机。气球升空后,会随时把测得的气压、温度、湿度等数据转换成无线电信号,再发送到地面,地面再经过信号转换得出探测结果。探空气球有的很低,只能测定2000米以下范围的大气物理状态;有的很高,可达到三万米的高空。我国的探空气球可达离地面2.5万米以上的位置。
目前,全球约有一千多个高空气象观测站,每天定时施放探空气球,由此获得常规的高空气象资料。这些资料可以加工成气象台预报人员使用的高空天气图。
三是平衡气球。它也叫无外力气球或定高气球。此气球施放后,球体可以保持在某一高度上,随着空气水平飘移。如果使用经纬仪和测风雷达,就可以判断其所在的位置;再根据其时间的变化,就可以求出同一高度层的大气各个气象数据。
平衡气球有的定点于平流层上,顺着西风带,可以围绕地球飘行。平衡气球的探测仪器和无线电发报机常常靠太阳能电池来供电,其信号则通过卫星直接转发到地面接收站。
四是“母球”系统。它包括一个大型气球和在飘飞途中逐次下投的探空仪。探空仪在下落时一边探测大气一边发报,母球接收到它的数据后,再经过卫星中继站传给地面站。
(3)气象火箭:
火箭有上千年的历史,但现代火箭投入运用的时间却不长,致于气象火箭的使用年限更短。目前使用气象火箭进行大气探测的国家有二十多个。一些国家,如美、苏、英、法、日等设置了许多气象火箭探测点,建成了全球气象火箭网,定期发射火箭,互相传递信息。我国的探空火箭已能发射到离地面120~140公里的高度,在海南省还建有探空火箭发射常火箭飞行依靠的是它本身携带的固、液体燃料,它的速度快,可以达到上百公里的高度,因而它填补了气球和卫星所在高度之间空白区的大气探测。但是火箭飞行的时间短,仪器因空气摩擦产生的温度也高,而且火箭本身需要制导系统,这些都给火箭的大气探测带来了不便。为了取得更大的收获,一些光学经纬仪、高精度气象雷达、计算机等常常与气象火箭配合,以弥补气象火箭的先天性不足。
运用火箭探测大气的方法有以下几个:一方面,火箭在上升途中运用其所带的仪器直接测量,这种方法常见于早期,现已淘汰;另一方面,火箭在上升时,可以按时将其携有的仪器分开,仪器再依靠降落伞缓慢下降,自动测量;还有一个就是火箭在上升或下降时,陆续释放出不同的仪器。这些仪器有的是探空仪,它们将所测的温度、湿度、气压和风向的数据,通过无线电发射机准确地发回地面;有的是各种跟踪物,如纳云、金属丝、无声榴弹、带反射靶的气球带,用以测量不同高度的风速、风向等。还有的你怎么也想不到,它们竟然是取样瓶,在取得空气样品后,能返回到地面。
气象火箭的类型有大有校小的只测几种常规要素,大的能探上十种要素。气象火箭美国有洛基、阿卡斯型号;日本有MT—135型号;英国有大鸥火箭;俄罗斯有MP—100和MMP—06型号等。
(4)多面手的飞机:
飞机的诞生到现在还不到100年,但由于飞机有其卓越的性能,这使它在高空大气探测上显示出得天独厚的优势。飞机在垂直高度和水平范围的机动灵活性都比较好,因此它比气球、火箭的本领要大得多。飞机在气象上得到运用的有螺旋桨飞机和喷气式飞机;也有少量中低空中飞行的各种飞机,如直升机。
飞机有一个最大的优点,就是能够载上各种遥感仪器。这等于是说在空中设置了一个气象平台,有利于提高天气预报水平。另外,经过特殊改装后的飞机可以在台风眼中飞行,在核爆炸后的蘑菇云中飞行,甚至可以在积雨云的附近探测云中的水量及气流分布的情况。当然,飞机还可以用来人工增雨,这里已是题外话了。
气象飞机是为了填补空中气象情报的不足,或者是为了执行某种特殊任务而用的,它需要安装有特殊的仪器设备。一般地讲,气象飞机除了装有测量大气温度、温度、气压、风速、风向的仪器和数据处理机外,部分的还有红外线、微波遥感设备,用以测量海水温度、云粒子分布、臭氧等。
飞机的外表也很独特,如有的飞机机身某处有凸出的雷达无线罩,它是为了保护雷达而设置的,为的是使雷达天线更方便地获取云、降水、台风、冰雹等数据参数;还有的头部有一个尖尖的鼻子,可别以为它是歼击机的空速管,其实它是特地用来测量温度的设备。
(5)运筹帷幄的雷达:
雷达运用于气象上,是二战期间的事。由于雷达在搜索敌方飞机、舰艇目标时,云和雨在荧光屏上的意外出现严重干扰了军事搜索,但受其启发却产生了气象雷达。此后,精明的英国人首次用军事雷达对一块降水云体进行了成功的观测,并做出了天气预报。于是,各种气象探测雷达如雨后春笋般地发展起来。
气象雷达是如何测定天气的呢?说到这儿,大家会情不自禁地想起蝙蝠飞行和捕食原理。蝙蝠靠的是嘴发出的超声波,它的耳朵能接收回声,并由此判断前方障碍物的位置距离。气象雷达的发射机按时通过天线发射高频的电磁波,电磁波遇到云雨等目标后,经过折射、散射、绕射,就产生了回波,雷达天线接收后再交给接收机处理,这样就观察到了云雨的存在。电磁波的传播速度是每秒30万公里,根据发射脉冲和接收回波的时间间隔,经过核算,就可以得出云雨和雷达之间的距离。另外,根据雷达天线的仰角与方位角,也可以确定降水的性质和降水强度。
气象雷达测定内容有测云、测雨、测雹等等。测云和测雨雷达使用的波长较短。如有用8.6毫米或1.25厘米波长的测云雷达,测量不降水的云;用波长3.5或10厘米的测雨雷达,可探测可能降水的云。10厘米波长的雷达宜用于探测子降水(如冰雹)或大范围强降水(如暴雨、台风雨)。测风雷达常需要悬挂有一个角反射靶的气象气球的帮助。
雷达按使用效应不同也分成不同种类,这里举多普勒雷达、声雷达、激光雷达简要谈谈。
多普勒雷达,是用多普勒效应来测定云和降水粒子等运动速度的雷达。
激光雷达,是利用一种特殊的光——激光制造的雷达。激光亮度高,方向性强,发射角小,有人称它为“目光犀利”、“明察明毫”,一点也不为过。它的亮度比太阳光还高,红宝石激光器产生的亮度比太阳光要亮上百亿倍,可以看到大气中的气体分子、烟尘等溶胶粒子。而且它单色性好,一般普通光源有很宽的光谱,而激光只有单一光谱。激光雷达中,红宝石激光雷达有几十年的历史,我国在1966年就研制出了第一台百兆级的红宝石激光雷达。激光技术发展很快,并出现了分枝,如多普勒激光雷达、拉曼激光雷达、差分吸收激光雷达等,它们在监测大气环境方面起了不少作用。
声波在不均匀的大气中散射本领要比无线电波和光波大,利用这一特点制造出来的雷达叫声雷达。大气温度、湿度、风速变化对声波折射率的影响,一般要比无线电波和光波要大上千倍,所以声波的散射量要比无线电波和光波长。
声雷达最简单的用途就是测定大气中某些目标物的位置。如果要测定大气湿度,则需要通过发射两个不同频率的声波;如果再加一个温度,就要发射四种不同频率的声波。声雷达对低层大气的遥感探测成效显著,它造价低廉,使用方便,深受各国的表睐。我国在1975年就研制出了声雷达,据悉,在大气探测方面已经取得了可喜的成果。
雷达技术发展迅速,目前与之相关的一些较完善的探测系统相继问世。
如计算机与天气雷达相联的数字化天气雷达探测系统,它已经远远超出了对天气现象的监测,对洪水预报、江河水位的监视都完成得很好。再如多普勒天气雷达系统,它对警戒龙卷风有特殊的本领。还有一些天气雷达系统,如双波长雷达探测系统、圆盘振波雷达系统,也在发展中。
卫星巡天
自从1960年1月美国第一颗气象卫星泰罗斯1号升空以来,俄罗斯、日本、中国、法国等都拥有了自己的气象卫星。气象卫星的问世,为太空探测大气翻开了新的一页。
气象卫星不同于气球、飞机、火箭等直接运用气象仪器探测,因为它使用的是遥感技术。遥感技术,就是不实际接触被测对象——大气,而是从远处高空感知事物的性质。但它又不同于雷达的遥感,如微波雷达、激光雷达、声雷达都需要人工主动地发射波动信号,通过回收大气相互作用信号来摸清大气的状况;气象卫星只利用天体信号源(如太阳),或直接接收大气本身发射的信号(大气信号源),就可达到探测的目的。按专业述语讲,它属于被动探测系统。
气象卫星利用它的探测器,接收被测目标发射或反射的电磁辐射,就可以测出大气的性质与状况。气象卫星有两个杰出作品,叫可见光云图和红外云图。可见光云图,简言之,就是用照相方式获得的云图,它用辐射仪器直接接收大气反射的太阳光成象。可见光云图很直接,只与反射率有关,如白色部分可能是反射率高的积雪和厚云;黑色的可能是反射率低的陆地或海洋。红外云图也不难理解,因为任何物体都具有温度,温度不同,发射的红外辐射就不一样,根据这种原理就可以得到一张反射不同物体的红外特别图像。当然,我们看到的电视卫星云图是经过计算机加工处理的,并非原图。
气象中以探测大气的温度、湿度以及不同气体的含量。如波长为6.3微米左右的水汽对红外辐射吸收能力很强,如果在卫星探测器上装有波长为6.3微米的滤光片,就可以发现大气中的水汽含量。气象卫星的探测能力正在逐渐增强,它已由最初的电视摄象方式发展为扫描辐射仪和分光计(可见光、红外和遥感的结合),可以获取昼夜高低分辨率云图和大气要素以及环境参数的定量资料。卫星资料的传输已发展为速率更高、抗干扰力更强的数字制式;在资料处理方面,人机对话系统已经建立。
气象卫星按运行轨道可以分成两种,一种叫地球静止气象卫星,高度约为36,000公里左右,绕地球一周的时间为24小时,正好与地球自转速度相同,因而,从地球上看,好像卫星是静止不动的。目前,全球上空的静止卫星每30分钟可获得一张云图照片,通过连续图片的拼接,可以知道云的移动形势、高度、湿度和海水温度等。地球静止卫星已经发展了几代。在这之中,欧洲气象卫星组织已经和准备从1988年到2006年,分别发射3—7、MSG—3,共10颗气象卫星;印度将从 1990年到 1998年分别发射印度卫星1d、2a、2b、2e气象卫星;日本从1984年到1999年要发射向日葵-3——-5号,气象卫星-1号-I~M号共四颗卫星;俄罗斯计划从1994年到,1997年发射电子-1,电子-2气象卫星。
另一种叫极地轨道气象卫星,高度约为800~1000公里。它每天围绕地球运行14圈,可以对世界各地巡视两遍。由于这种卫星采用的是太阳同步轨道,所以每天几乎在同一时间经过同一地区的上空。显然,每天获得的观测资料由于时间相同,因而具有可比较性。极地轨道卫星探测的内容除了静止卫星的以外,还包括洪涝灾害、森林覆盖、气压、臭氧总量等。极地轨道气象卫星也发展了几代。目前美国有实验研究性气象卫星雨云系列;前苏联从1969年开始发展了流星系列,包括Ⅰ型和Ⅱ型。我国从1988年开始发射了风云号系列卫星。在最近在十几年中,一些国家和地区还将发射新的极地轨道气象卫星,这包括:欧洲气象组织预计2000年发射的极地轨道气象卫星-1—-3;美国国家海洋大气局预计到2006年发射的-11、-12、-J——- 9N、NPOESS-1—-3,共11颗卫星;中国预计到本世纪末以前发射的风云-1C、-1D型卫星;俄罗斯预计到200O年发射的流星1-21、3-5~8、3M-1~2六颗卫星。
天气监测网
随着科学技术的发展,科学家们已经不满足于单纯的依靠气象站、飞机、火箭、雷达、卫星的大气探测,而是把它们统一地规划,系统地结合起来、从而形成了一张奇特的天气监视网。
从1962年初开始,世界气象组织就开始着手制定世界天气监视网计划,即WWW计划(World Weather Watch)。第五届气象组织大会批准了WWW的第一期计划。WWW计划是世界上对地球大气监测规模最大的计划。
与此相应,世界气象组织还制定了全球大气研究计划。其中第一次大气试验从1977年到1984年引人注目。可以说,这次全球大气试验是第一次全球性的系统观测大气的尝试。当时,气象专家们为第一次全球大气试验设计了一个综合观测系统,它包括基本观测系统和特殊观测系统,基本观测系统以世界天气监视网的地面观测系统和气象卫星观测系统为主。特殊观测系统是反映在特殊观测时期所特有的特殊观测手段。
在第一次全球大气试验期间,世界气象组织150个成员国大约有9300个地面观测站每天进行定时观测;约有850个探空站每天进行1~2次释放探空气球活动。在海洋观测方面,约使用了50多艘专业船、7400艘商业船、17架专用气象观测飞机、80多架航空公司的飞机、300多个定高气球。我国的实践号、向阳红9号探测船参加了这次活动。在气象卫星观测系统方面,有五颗静止气象卫星和五颗极地轨道气象卫星参与了行动。这个规模庞大、组织复杂、经历时间长的国际性大气探测活动为世界监视网的建立打正了良好的基矗目前世界天气监视网比较完善,它由三大系统,即全球观测系统、全球资料处理系统、全球电信系统组成。全球观测系统已经形成了立体网络,它有地面观测网、陆地海洋观测网、卫星观测网;全球资料处理包括世界气象中心处理系统、区域气象中心资料加工处理系统、国家气象中心资料加工处理系统;全球电信系统有三级通信线路和三级通信中心。前者包括主干线及其支线、区域通信网和国家通信网;通信中心包括世界气象中心、区域通信枢纽和国家气象中心。世界气象中心有三个,区域气象中心有30个。
世界天气监视网的建立,为大气探测提供了良好的条件,它必将提高天气预报水平。随着科技的发展,新型探测仪器会不断增加,探测的规模、广度也会扩大;那时,气象观测仪器密切协作、互相配合,组成一个密集的“疏而不漏”的天网,任何大气现象也休想逃出它的眼睛。
漫话天气预报
每天,我们收听中央人民广播电台的节目,就会知道全国的天气情况和海洋情况;我们收看中央电视台的天气预报节目,也能了解全国的天气形势,以及部分城市的气温……你或许以为天气预报不过如此,但是天气预报并不仅仅是这些,单就天气预报的内容就纷繁复杂、品种繁多,有的也许你还闻所未闻呢!
天气预报按预测时间的长短,一般可分为短期、中期和长期三种。
短期天气预报,一般只预测未来三天以内的天气情况,它要求比较具体、详细,比如,明天有没有雨、有多大;后天有没有风、是几级;今天气温最高多少度,等等。这就是我们一般从收音机中听到的天气预报,特别是当地气象站播发的天气预报。
中期天气预报,一般预测一个星期到一个月以内的天气情况。它主要预报了一些特别重要的天气,像台风这种灾害性天气。
长期天气预报,一般指预测一个月以上到一年以内的天气情况。但是我们知道,气候是长时期的天气情况,它反映的是某地一年或一段时期气象状况的多年特点。所以一年以上的长期天气预测,可以看作是气候预测。它主要预报某些气象要素在月、季、年相对于其气候平均状态的偏差。如这个月的气温是偏高还是偏低,今年是干旱还是雨涝,这个季节降雨量是偏多还是偏少等等。
天气预报根据预测的内容不同,可以分为一般性天气预报和灾害性天气预报。前者就是我们每天可以听到的有关阴、晴、雨、雪、风向、风力、最高最低温度等气象内容的预报。后者又叫警报,只关注台风、寒潮。霜冻等等。
天气预报中还有农业气象预报。农业气象预报是以农业业生产为服务对象的预报。这种预报的目的是帮助农民预防和战胜各种不利天气条件,使农作物获得好收成。农业气象预报有物候预报、农作物发育期预报、收获期预报、产量预报、灾害性天气预报等。
当然,如果按区域来划分,天气预报有世界性的、全国性、各省市的、各地县市的。按预报的形式也有文字、图片、讲解或综合性等的划分。
天气预报一般愈短愈准,中期、长期天气预报目前并不完善,这方面的研究工作仍在开展。一般性天气预报现在发挥的作用太小,灾害性天气预报的水平当前已经大为提高。以后的天气预报水平更高,特别是中长期天气预报相对水平会有提高。农业气象预报对农业的指导作用会更明显有效。
制作天气预报
天气预报究竟是怎样做出来的呢?它也像我们看到的气象节目那样轻松而简单吗?当然不是。有趣的是,当你懂得它的整个制作过程后,你甚至也可以加入到他们的活动中去。
首先,在全球大气监测网上,成千上万个地面和高空观测站、气象卫星接收站、天气雷达站等,夜以继日地观测着大气的变化,它们迅速地将观测结果传送到各个国家的气象中心,各个国家的气象中心及时将这些数据通过通信设备传送给世界气象中心。世界气象中心将这些资料汇集整编后,再转发给各个国家和地区的气象台,气象台则把这些资料加工成各种天气图,条件好的则直接显示在计算机上。气象预报员再结合其他辅助性资料,根据大气动力学和热力学理论,运用各种预报方法,做出天气预报。
有时候可能有根据不同的方法得出不同的预报,乃至相反结论的情况;抑或碰到非常时期,如举办大型运动会,或者可能会涉及到灾害性天气时,气象台会招集各个气象专家进行集体讨论,最后得出比较一致的意见。为了保证天气预报的准确性,一些气象站还会与附近气象台进行气象信息的交流活动。
由此可以看出制作天气预报的程序并不难。不过,在一些具体制作方法上却不容易。下面分别对几处预报方法扼要谈谈。
先说天气图预报方法。天气图分地面和高空两种。前者填有在各地用同一时间观测到的海平面气压、气温、风向、风速以及天气现象等;等温线、等压线也标明出来,这样从图上就可以分析出高压、低压、冷锋(冷空气向暖空气方向移动的锋了、暖锋(暖空气向冷空气方向移动的锋)等各种天气系统,根据天气系统在一段时间后的移动情况和强弱变化,就可以确定它未来的位置和天气状况。但天气形势也会有变化的时候,它与天气现象并非是一一对应的关系,这就要依靠各地气象预报员的经验了。
再说数值预报方法。数值预报的产生与高等数学的关系很密切。当气象学家们把大气运动规律用微分方程表示出来时,实际上就建立了一种数学模型。数值预报是由气象要素场在某一时刻的状态,通过数学计算得出气象要素在这一时刻的变率。数值预报模式,就是大气情况的数学模型,这种模型数目很大,准确率大小不一。
接下来说统计预报方法。统计方法就是根据过去已掌握的资料,来研究天气本身的规律,进而预报未来可能出现的天气变化。统计预报由于撇开了背后形成天气现象的原因,可以说是“就事论事”,所以有其致命的弱点,但气象学家们引进了天气学进行分析,即把因果机制运用上来,也就形成了天气统计方法。
但是数值预报报出的等压面高度、风温度、湿度等值涉及面大,其解决的是大尺度环流势场的预报,而局部地区数值预报却很难有所作为。科学家们经过一番努力,开始把天气资料用统计方法罗列,再将数值预报报出的值代入方程进行运算,竟然得出局部地区的天气预报,这样,完全预报方法产生。
到本世纪60年代末期,美国气象学家们提出了一种MOS(Model OutputStatistics模式输出量)方法。此方法利用模式中输出的各种动力统计量,建立了与局部地面气象要素存在的统计关系,并用概率统计方法建立一种关系模式进行预报。它也被称为统计方法。MOS的预报准确率比较稳定,美国、日本分别在1972、1976开始使用MOS方法。
另外,美国还有一种AFOS系统(Automation of FieldOperation and Service),用在短期预报服务上。此系统全部实现了自动化,可以对未来两天的降水量类型、概率、风、云量、最高最低温度等天气现象作出预报。
关于长期天气预报方法,特别是进行气候预报方法,目前并不理想,但长期天气预报并非不可能。本世纪二、三十年代,英国气象学家瓦克根据大气活动中心与世界天气的关系进行过长期天气预报。几乎在同一时期,前苏联气象学家莫尔坦诺夫斯基也以北极极地气团(气团指一些基本属性与性质比较均匀的大范围空气)的动向为根据,做过区域性长期预报和一般性季节预报。三、四十年代,还有不少气象学家,如德国的保尔,还用过周期性方法进行了长期预报。
长期天气预报也离不开统计方法,它建立于过去天气变化的基础上。不难理解,这无非是想通过过去天气变化的规律来推知未来天气演化的形势。
自然,数值预报也适合于长期预报。目前,长期天气预报方法基本上是这样的:通过对一些主要的大气环流系统(如副热带高压)和下垫面状况(如海水湿度、地面温度)的分析来确定它同旱涝、冷暖等长期天气变化规律之间的关系,从而建立一种模式。这种模式有的是定性的,有的是定量的,有的是定性与定量的结合,不一而足。
天气统计方法对长期预报也有一定的启发作用。例如,厄尔尼诺现象—秘鲁和厄瓜多尔沿岸的海水升温现象,与世界气候异常很有关系。在每隔2~7年后,从冬末春初开始的一年中,秘鲁附近的海水开始增温,增温时产生很大的热量使海面上空气温剧增,引起大气环流和世界天气异常。此时,一些地区发生很大的洪涝灾害,而另一些地区则出现特大的干旱;有的地方出现奇热的现象,有的地方,甚至夏季会出奇地冷。据此,我国科学家发现,我国东北地区在厄尔尼诺年冬季往往出现异常低温,如 1969、1972年以来东北地区出现的几次大范围严重低温,有六年是厄尔尼诺年。
另外,还有天文(如太阳黑子的活动)和地质变化(如地震)等进行长期预报的,此种方法还在探索之中。
中期天气预报介于短期和长期天气预报之间,它的方法与前两种并没有严格的界限。这里主要介绍一下中期数值天气预报。
中期数值天气预报是随着大气探测、计算机和通信技术及气象科学发展起来的。由于一些灾害性天气均为中期天气过程,所以从70年代以来,世界上一些发达国家都加强了对时效为10天左右的数值天气预报的研究和试验工作。
我国是世界上自然灾害最多的国家之一。暴雨、台风、寒潮、暴风雪等灾害都给国家和人民带来了巨大的损失。因此我国的中期数值天气预报系统地研制极为迫切。经过科技工作者的努力,1991年我国第一代具有中等分辨率的中期数值天气预报T42L9业务系统投入使用,并开始向全国各级气象台(站)发布中期天气形势分析报告。几年后,我国第二代中期数值天气预报TL业务系统研制成功。该系统预报水平可与当代中期数值预报的最高水 6316平ECMWF(欧洲中期天气预报中心)预报模式媲美。它以我国自行研制的银河—Ⅱ巨型计算机(四台计算机,每秒可运算10亿次)为主。配接有各种不同的计算机。此系统包括要素库、预处理、客观分析、初值化、预报模式、图形系统、业务监测系统等部分。中期数值预报产品通过工作站,以各种形式输给中央气象台预报员使用,各大区域中心和盛地气象台也可以收到其传送的资料。不用说,中期数值预报的产品通过加工处理后,可以在各级新闻媒介播出。总而言之,我国的中期数值天气预报水平已经接近于国际先进水平。
生物“气象员”
生物学家根据观察,发现水母是一个高度准确的“活气压计”。在暴风雨到来很早之前,它就急急忙忙地把身体隐藏到安全地带。
科学家仔细地研究了水母的身体,发现它有一个可以感觉超声波的“耳朵”。在暴风雨发生前10~15小时内,它的“耳朵”就能清晰地“听”到由水中传来的超声波。在水母的“耳朵”前端有根细细的棒状物,上面带一个圆球,充满液体,有一个小小的石头浮起,并同神经末梢接触。超声波首先被充有液体的圆球接收,然后由水泡中的小石子传给神经,于是水母就接收到大风警报的信息了。科学家根据水母“耳朵”的工作原理,制成了自动预报大风警报的“电子耳”装置。
在自然界中,青蛙素有“活晴雨表”之称,因为青蛙能够感知大气的微小变化。非洲的土著居民,只要发现树蛙由水中爬到树上,便动手做防雨的准备,因为这预示着雨季要来到了。而当青蛙在水面“吧哒哒啦”地拍水时,也就是预报天要晴了。
许多鸟类也都是出色的“气象预报员”。它们对气压的变化,阳光的强弱,以及雷雨前大气中的积电现象非常敏感。这些气象的变化,往往会直接影响到鸟的歌唱、飞翔以及候鸟到达和出发的时间。
预报风向是老乌鸦的拿手好戏。人们只要看一下它朝什么方向站着,就可知道吹的是什么风。它的头朝南,便是南风;头朝北便是北风。因为它为了保护羽毛,总是让风顺着羽毛吹。
预报阴雨也是乌鸦的强项,因为它对天气变化很敏感。一般在大雨来临前1~2天它就会一反常态,不时发出高亢的鸣啼。一旦叫声沙哑,便是大雨即将来临的信号。故有民谚曰:“乌鸦沙沙叫,阴雨就会到。”
大雁是预报寒潮的专家。当北方有冷空气南下时,大雁往往结队南飞,以躲过寒潮带来的风雨低温天气。“大雁南飞寒流急”,这可一点不假。秋夜,它还用更加独特的方式发布气象信息,即:“一只雁叫天气晴,二只雁叫雨淋淋”,很灵验。因啼叫的大雁越多,即空气中湿度越大,预示大雨将至。
老鹰一般很少发出叫声,只有当地面有食物可猎取或冬天气温很低的寒冷时才会鸣叫。冬天高空气温很低,就可能下雪。所以“老鹰高空叫,大雪就来到”之说广泛流传于民间。
麻雀堪称“晴雨鸟”。若晨曦初露,它们成群吱喳欢快鸣唱,那是告诉人们,今天天气晴好;若麻雀活动迟缓,叫声“吱——吱”长鸣,则预示晴转阴或阴转雨;若在连日阴雨的早晨,群雀叫声清脆,则预示天气很快转晴;夏秋季节,天气闷热,空气潮湿,麻雀飞到浅水处洗澡散热,这又预示一两天内的雨,故谚语有“雀噪天晴,洗澡有雨”。此外,若麻雀傍晚提前入窝归巢,并不时在窝边发出长而缓慢的鸣叫,似在“忧声长叹”,这也预示着当晚或次日天阴有雨。
“燕子飞得低,准备穿蓑衣”。天将下雨时,空气里水汽增多,一些小虫子飞不高,多靠近地面飞行,燕子只好低飞捕捉。故燕子低飞时,就向人们预告:天要下雨了。
画眉对天气也能“未卜先知”。每当它们嬉戏枝头,亲昵对话,表明未来一段时间晴好无雨;而它们隐居枝头,诡秘无声,或销声匿迹,表明阴雨即至。
“子夜杜鹃啼,来日晒干泥”。这句民谚告诉我们,如果杜鹃鸣叫,它预示着明天将是晴好天气,或表示天气将由冷转暖。
喜鹊生性喜明丽、暖和,有“太阳鸟”的雅称。它对天气变化最为敏感。
“仰鸣则晴,俯鸣则阴”,这是古文《禽经》中的记载。清晨,如果喜鹊登枝,欢唱枝头,表明当日天气晴好;若在枝间来回蹦跳不安,低声噪叫,则告诉人们风雨欲来。
古巴一位退休的船长,家里养了一只能唱许多曲子的鹦鹉,它居然能将天气的变化用固定曲调唱出来。例如,它唱施特劳斯的圆舞曲时,就意味着快下雨了;在暴风雨来到之前,鹦鹉唱的是萨姆巴舞曲;如果从鸟笼里传出来是进行曲,就是向人们预报,飓风要来了。真令人叫绝!
蜘蛛的气象预报决定了一场战争的胜负。1794年的秋天,法国军队侵入荷兰。当时荷兰没有阻挡得了法军的兵马和大炮,只好打开运河闸门,放水淹没道路,阻住了法军的锋芒。面对茫茫的大水,法军只得准备撤退。就在这里,法军司令官发现了蜘蛛异乎寻常地加倍拉丝结网。他立即命令停止撤退,原地待命。因为只有在晴朗严寒的天气里,蜘蛛才会有此举动。果然,不久气温骤然下降,荷兰人水淹道路的苦心,也随之“冻结”了,到底没有阻住法军的进攻。
还有些昆虫能做出长期的天气预报。譬如,在秋天时,蚂蚁把窝筑得越高,该年冬天就越冷。
一个晴朗的日子,大科学家牛顿外出散步,路上碰到了牧羊人。这位好心的牧羊人说要下雨了,劝牛顿不要走远。牛顿望着晴朗的天,不相信会下雨,还是继续往前走。可是不出30分钟,果然下起大雨。牛顿对牧羊人的准确预报十人吃惊,便去请教。牧羊人指着他的羊群说:“只要观察羊毛的起伏变化,就可以预见否要下雨。此外,山羊躲在屋檐下的时候,就要下雨;而在草地上蹦蹦跳跳戏耍时,必会晴天。”
在西伯利亚的针叶林中,生活着一种小小的啮齿动物——金花鼠。这种金花鼠对气候变化感应十分灵敏。有时天空虽然晴朗,金花鼠却会突然发出刺耳的尖叫,并且窜来窜去。每当这种时候,不久乌云就会笼罩天空,倾刻雨至。如果金花鼠在早晨就高声叫唤,那么傍晚时分天气就会变坏。
在漫长的进化过程中,生物为了适应周围环境的变化,形成了种种器官。
这些器官仿佛是能够接受各种外界刺激的精巧装置,引起了生物学家和气象学家的极大兴趣。譬如,人们长期以来通过对家畜行动的日常观察总结出的许多谚语,对气象的科学研究就很有参考价值。除了动物以外,尚有许多植物对气温、气压、大气以及土壤湿度、阳光照射量等等变化反应也很灵敏。
人们甚至可以同时用几种植物进行长期天气预报。例如,金盏草、钱葵草、牵牛花等,不论天气如何晴朗,只要它们开放的花儿又闭拢起来,那就预示不久要下雨了。
在自然界中,大约有400种植物可当作“晴雨表”使用,加上鸟类、鱼类、昆虫,在地球上总共有几千种“生物气象员”可供人类利用。
掌握技术造福人类
现代实验方法
有一种现象不知道大家注意到没有:当我们面对一块玻璃或镜子呵热气时,玻璃、镜子表面会变得模糊不清;当我们打开冰箱时,有时会发现冰冻的食物上带有冰屑。这是怎么回事?好多人会迫不及待地解释:这是空气中的水汽凝成了水滴,或者水滴结成了冰。看来,只要有条件,我们自己也可以模拟地制造雨水和冰雪。科学家们也正在沿着这条路日夜兼程。云室,一种对云进行实验模拟研究的主要设备,就是证明。
云室是用来模拟自然云的各种现象的。譬如,云滴是如何增长的、冰晶是如何产生和发展的、云中的雷电是怎么回事,等等。云室有大有小,小的只有几十毫升,大的可达上千立方米。它的研究对象很多,涉及到水汽的,有扩散云室和对流云室;涉及到温度的,有冷云室(低于0℃)、暖云室(高于0℃)、等温云室(温度分布均匀)、梯度云室(温度在垂直方向不同);涉及到雾的,有混合云室和膨胀云室。
云室并不能代替真正的云,它只是一种模拟,这种模拟是有限的,但是它可以近似地反映云的各种实际现象,有利于人们弄清它的活动规律。我国在1985年就建有亚洲最大的综合性中性云室,约有96立方米。这个云室的温度、湿度、气压可以进行调节,云室顶部还装有风洞。另外,我国还有一些等温云室和小云室。等温云室可以对人工降雨的催化剂进行研究。
利用云室,科学家们取得了一些科学研究成果。日本科学家曾在一个同心圆柱形的对流云实验中发现:雪晶的形状与它们形成时的温度、湿度条件有关。如果温度在-5℃,雪晶会长成枝状。因而,科学家们认为,改变云室的温度、湿度,就可以制造出不同图案的雪晶;反过来,通过雪晶的状态,就可以判断云层的温湿度。
再比如,美国科学家们通过混合云室发现,干冰可以使云冷却冰晶化、碘化银具有很好的成冰性能。正是从此处得到启发,气象工作者的人工降雨催化剂首先选就是干冰和碘化银。
当然,建造云室只是人工模拟的一个方面。其实,不要说短期的天气现象可以模拟,信不信由你,气候变化也可以人工模拟呢!
气候模拟与现代大型电子计算机的出现分不开。本世纪第二次世界大战后,由于各个国家工业飞速发展,造成“三废”“(废水、废气、废渣)对环境的严重污染,人为因素也在一定程度上造成全球的大气温度升高、气象灾害频繁等气候变化。为了探测未来气候变化的结果,提高人们的防范意识,一些国家的气象学家纷纷求助于大型电子电子计算机,他们把一些人为的因子引入气候模式,然后进行人工模拟。
这种气候模拟应该说比较可信。因为一些因子的反馈作用也被考虑进去了,这就使该模拟处于一种动态的系统中。比方说,由于温室效应作用,全球大气温度上升;大气温度上升,海面蒸发加剧,这样云量增多,削弱了太阳辐射,地面温度也因此相应降低,而大气主要吸取的是地面热量,所以大气温度的剧增也受到牵制。
目前,美国国家研究理事会的平衡气候模式模拟结果引人注目。他们认为未来气候会有以下变化:(1)平流层温度降低(平流层指对流层以上的一个层次)。
(2)全球地面平均气温增高。
(3)全球平均降雨量增多。
(4)海冰减少。
(5)极地气候变暖,特别是在冬季。
(6)大陆气候变干燥,犹其夏季最为明显。
(7)高纬度地区降雨量增多。
(8)全球海平面上升。
这些模拟结果,与近些年来全球某些气候变化的趋势相吻合。但是,一些气象学家却抱着审慎的态度。他们认为,未来气候变化是否真正如此,还需要实际来检验。
天公可以作美
天公不作美。雷声轰轰,叫人心惊胆颤;漫天的大雾,令飞机、火车望而却步,成了“睁眼盲人”;还存在那久晴无雨的日子,干旱把人畜急得到处乱窜……忽然,几声炮响,久旱后的天空下起了小雨;一阵飞机马达声响过,机场上的大雾消散……这是咋回事呢?原来这是在进行人工降雨、人工消雾活动。人工影响天气,驱灾避灾的办法很多,比较成熟的有人工降雨、人工消雾、人工消雹、人工避雷等方面。
(1)人工降雨:
人工降雨,就是指根据云和降水形成的机制,通过播撒一定数量的催化剂,从而达到激发和增加降水的目的。
人工降雨的原理很容易理解。我们知道,云是由大量的小水滴构成的;但这些小水滴并不一定凝结成冰晶,即使温度在0℃以下也可能只是枉然。
但如果云中一旦存在冰晶,它就会吸收水滴蒸发的水分而迅速增长,进而形成雪降落下来。雪下降时可能融化,导致降雨。
但是云有暖冷之分,因而对冷云和暖云实施催化降雨的方法是有区别的。例如,在我国北方和冬季的云大多是冷云,它们是由经过冷却的云滴(0℃以下)和冰晶共同组成的。此时要使云中产生更多的冰晶,由无雨转向有雨,或使雨量增大,必须使云中冰晶增多。可以向云中撒干冰,使局部温度下降,或者引入碘化银,使水汽分子在此冰核上凝结形成冰晶。至于暖云,则要设法使云中水滴重力变大,破坏云的稳定状态。有三种方法,一是撒吸湿性物质如食盐,使水滴凝结增大,二是干脆从飞机上直接将水泼入云中,加速降雨的产生,三是利用樟脑等表面活性物质,抑制蒸发作用产生降水的,等等。
根据统计表明,人工催化适宜增雨的云,可以使降水量增大10%~30%。有人因此估算,在一个平均降水量为300毫米的1万平方公里的面积上,可以增加6亿立方米的水,这可是个不小的量。
人工降雨引入催化剂有几种方式,或用飞机在云顶或云中选好合适的位置,直接播撒干冰、盐粉或碘化银;或者用气球把碘化银与火药红磷混合物带入云中;或者干脆用高射炮和火箭把催化剂射入云中。此外,据说用地面燃烧的办法,也可以把碘化银烟粒送到云中,但条件是这种云必须很低。
当然,人工降雨的问题也不少,关键是要判定是什么云和在云的什么部位引入催化剂的效率最高。
(2)人工消雹:
人工消雹在两百多年前就有人开始尝试。消雹其实只起对雹“以大化小,以小化了”的作用。具体地说,就是向云中施放碘化银或碘化铅等催化剂,它们会使云中冰晶数目增多,冰晶形成雹胚时会消耗大量的过冷云滴,结果使所有的雹胚都无法长得太大。雹块下降时有的会融化,这就形成了水滴,或者缩小成小冰雹,于是消雹的目的就达到了。和人工降雨一样,也有使用吸湿性物质消雹的,如食盐,它们会吸收云中的水分,使雹胚不致于膨胀得太大,及时降落到地面。
消雹可以利用飞机、高射炮、火箭等。在雷达的监测下,利用高射炮、火箭发射人工成冰剂,在我国与前苏联(现在以俄罗斯为主)比较常见。俄罗斯有专用消雹火箭和专用雷达。此雷达能在300公里以内确定是否有冰雹,并能确定雹区面积、移动速度、降雹强度,甚至可以算出冰雹的平均直径来。我国也在 1980年研制成了 JFJ—Ⅰ型降雨防雹火箭。
需要澄清的一点是,人工消雹也可以采用空中爆炸作业的方法。爆炸发生后,由于冲击波的作用,大冰雹会粉碎,过冷却云却会直接冻结下降,于是消雹的目的也就达到了。
(3)人工消雾:
雾给交通带来的损失是巨大的。飞机怕雾,有雾飞机无法起飞和降落;在飞行中,无法看清目标,会发生撞山等可怕的事故。1948年圣诞节,从武汉到上海的飞机,因大面积降雾一大就出现了三次事故。轮船怕雾,海上浓雾会使船只触礁失事;汽车怕雾,高速公路上汽车追尾事件的罪魁灾首常常就是雾。机场上一有雾,飞机无法起飞,其直接损失是以每分钟多少万元来计算的。1993年11月中旬有两大,北京首都机场因雾取消航班183个,直接损失300万元。有雾就要消雾,所以,今天有了人工消雾的新鲜事。
和云一样雾,也有冷暖之分。在0℃以下的冷雾,目前科学家已经有较为成功的办法进行消除;而对于0℃以上的暖雾,对付它的有效办法还没有找到。
消冷雾的原理是瑞典气象学家1933年提出来的。他认为,在云雾中必须有冰核存在,水汽才能以它为中心,结成冰晶降落下来。如果雾中没有冰晶,对否用人工方法将冰晶引入雾中使之消散呢?当然可以办到,这就是人工消冷雾。
实际上,第一次人工降雪的道理正好与此类似。那是1946年11月,美国科学家谢弗乘一架小飞机,在层云上沿一条4.8公里的航线撒下了1.36公斤的干冰,使整个云层变成了白雪。干冰是二氧化碳在-78.5℃时凝结成的固体,把它洒在云雾中,可使云雾的水汽温度降低到-40℃以下,并凝结成小冰晶,最后形成雪花掉下来。雪花掉下来,等于说消雾工作获得了成功。
消冷雾的关键问题是要产生冰晶,但产生冰晶必须使温度达到-40℃以下。一克干冰大约可以产生一万亿个小冰晶,另外,如丙烷、液氮可以使云雾气温下降到-70℃、-196℃,所以它们的消雾效果也不错。俄罗斯、我国消雾工作就曾用过液氮。与此同时,让空气对流速度达到1.5~2.0马赫(声音传播速度)时,据说,温度也可以降到形成冰晶的程度。
人工消雾也有直接采用降雨方法的,如使用碘化银为代表的冰核就是这样。碘化银的晶体和冰晶相似,这可以使水汽凝结在其上面。有一种方法是燃烧,即用高温把碘化银烧成小的烟粒,使它在饱和的低空雾中长成小冰晶,最后形成雨。我国气象研究院研制出高效的碘化银烟剂,每克碘化银可以产 15生10个冰核,是干冰的14倍。
实际上,消雾时常常要在地面设置多个催化剂撒播点,在地面上数米高度上施放催化剂,但这关系到风向和风速问题。国外的一些国家常布置多个撒播点,根据具体情况自动调整位置。
致于消暖雾,科学家们还在努力探索。国外曾有机场采用加热焚烧的办法驱雾,如巴黎奥利机场有一大群燃烧炉,在消雾时能自动点火,可耗油量很大,而且效果不明显,所以并不十分可龋法国戴高乐机场还把喷气式飞机派上了用场,在有大雾时,工作值班人员开动喷气发动机,利用高温喷气来驱赶浓雾。另外,还有利用声磁波消雾的方法,也没有达到实用的程度。
(4)人工防雷:
防雷这种提法是否准确,有待于探讨。但人工防雷已有几百上千年的历史了。
有人曾经指出,在我国古代建筑的各种楼阁上存在着避雷装置,这并非不可信。可是避雷并不等于消雷;严格地说,它还没有达到满足人们真正防雷的要求。
1749年,美国科学家富兰克林用风筝作实验,揭示出了雷电的秘密。后来,他把一个尖铁棒架在高物上,铁棒下面还接有一根接地的铁丝,从而形成了世界上第一个“避雷针”。
“避雷针”实际上是在引雷和招雷,因为它在雷雨放电时,会使周围的物质带电产生破坏作用。为此有人认为,1926年美国彼卡订尼军火库的火灾、1967年埃尔寒贡多储油库的火灾,就是避雷针“引火烧身”产生的破坏结果。
后来,人们发现了“避雷针”的症结所在,即单根避雷针不能容纳巨大电荷的通过,要想有效地避雷,必须设置更多的通道。为此20世纪中期,美国的“消雷公司”研制出了新型“消雷器”。此消雷器把避雷针的针尖数量增多,并进行了合理排列,下面再用导线接上触地装置。在雷雨发生时,地面电荷和雷雨云的电荷因异性相吸,开始相互流动。在此过程中,雷电中的电场强度会受到削弱,雷击事件因此减少。
我国在70年代开始消雷技术研究,并且在云南、贵州、湖南、浙江、福建、河北等地进行了一些试验,并取得了很大的成功。例如,昆明气象站在太华山已建有一座25米高的“避雷针”建筑物,由于此地雷雨经常发生,且能量很大,几乎每年都有雷击伤人的事件,1967年到1979年就发生了五起事故。1979年后,自从该地安装了一座6.5米高的消雷器后,就再也没有发生过雷击事故。我国在80年代末已研制出新型消雷器。
(5)人工防暴雨:
前面说过,人工能降雨、消雹,能否在多雨季节人工减少降雨呢!这的确是个有意义的话题。应该说,这并非不可能。其实,不要说人工减少降雨,连人工削弱台风、人工改变台风路线都可能实现!现在,一些科学家们正在努力进行各种尝试,争取把这些美好的愿望变成现实。
但是,人工消除暴雨还只是一个梦想,还没有哪个国家在这方面真正做过成功的试验。可另一方面,人工却可以减少暴雨的直接冲刷力,进行人工蓄水,变暴雨为资源,这却是的的确确能够做到的事。
对付暴雨,主要在于就地蓄水。据推算,一万平方公里的暴雨约有10亿立方米的雨水汇集到河流中,以洪水日行100公里进行估计,必须存在容纳每秒超过一万立方米的充量才不致洪水泛滥。但实际情况是,我们根本达不到这样的条件。如1977年7月5日~6日,黄河中游经历的一次大暴雨,在延水甘谷驿以上5981平方公里的流域上,最大洪峰达每秒905万立方米,一天洪水量达1.38亿立方米,而且每立方米含泥量达800公斤。如此大的洪水冲刷,造成飞机场被毁,纪念馆文物被冲走,人员失踪,就不足为怪了。
我们进行人工蓄水是有科学根据的。一般地,每一米厚的土层可以蓄积100毫米的水量;我国黄土高原的蓄水量更大。鱼鳞坑、水平沟、水平梯田是蓄水的小型工程,采用植被结合,效果会更好。10平方米的汇流面积内有一个或多个容量近一立方米的鱼鳞坑,能够拦住100毫米的大暴雨。鱼鳞坑挖掘简单,规模很小,它也有利于各种植物的成活。
挡住暴雨是一回事,还要建立各种山间水库和塘坎,以便于贮水。有人统计,每10平方公里汇流区修一个山间水库,使总库容量达100万立方米,便可以蓄积 100毫米的雨水。如果有条件,还可以建立更大的流域性水库,贮积更多的雨水。这些雨水干旱时可以抽取利用,平时也可以开库放水,甚至发电,一举两得,何乐而不为呢。
生物技术
酸雨的危害一直引起世界各国的普遍关注,目前,世界上已形成三大酸雨区,它们是:以德、法、英等国家为中心,涉及大半个欧洲的北欧酸雨区;以美国、加拿大为中心的北美酸雨区;这20年来发展的覆盖我国四川、贵州、广东、广西、湖南、湖北、江苏、浙江、青岛等省市的酸雨区。
导致酸雨的最主要物质是二氧化硫。一些国家已经认识到酸雨危害的严重性。曾有欧洲26个国家和加拿大等,在联合国欧洲经济委员会提出的新协议上签字,保证把本国的二氧化硫排放量减少80%。美国也承诺在2010年将二氧化硫排放量减少同一百分点。从这些可以看出来,减少二氧化硫的排放量是控制酸雨的最好办法。为此,全世界四十多个国家通过了有关法律,开始限制汽车排污。欧洲共同体甚至要求成员国在1996年前,全部使用无铅低硫石油。但是经济需要发展,自然资源的利用不应该减少,关键是要另找出路——有没有一种两全其美的办法,既可以利用资源,又可以保护环境不受破坏呢?当然有,生物技术就是由此脱颖而出的一种方法,它给我们的困境带来了新思路。
1993年,在印度召开了“无害环境生物技术应用国际合作”会议。专家们认为,用生物技术治理环境有巨大的潜力。煤是一种重要能源,它燃烧时会放出二氧化硫等有害气体。在煤中,硫分有机硫和无机硫两种;无机硫大部分以硫形式存在,其中主要有黄铁矿(FeS)。生物学家们认为,利用微 2生物脱硫,可以使单体硫变成硫酸。在这个领域有些国家已经取得了很大进展:日本中央电力研究所人员从土壤中分离出一种硫杆菌,该菌能有效地去除煤中的无机硫;美国煤气研究所筛选出一种新的微生物菌株,它能从煤中分离有机硫,但不降低煤的质量;捷克还筛选出一种酸热硫化杆菌,可以除去黄铁矿中75%的硫。1991年进行统计时,利用生物技术可以脱去煤中无机硫的78.5%,有机硫的23.4%。
利用生物技术脱硫原理简单,投资较小,特别适宜于一些发展中国家使用。我国煤储量和年产量均处世界前列,煤在能源的结构中占有首要位置。
生物技术脱硫,在我国前景美好,需要大力研究和开发。
气象导航
利用气象导航,并不只是像一些人想象的那样,仅仅只替飞机、船舶的位置进行定位。气象导航说到底,可以提供两种航线。一是经济航线,即整个航行中,从一个港口到另一个港口,哪个航线时间最短,所花费的燃料最少,效益最高;一个是最舒适航线,即航行中哪儿风平浪静,晴空万里,最能避免台风、海浪、飓风的袭击。不用说,第一条航线为货运提供了方便,第二条航线为旅客提供了安全。
可别认为导航只是闹着玩。这里摘录两个例于,通过比较你就知道了差别:1980年底,我国某远洋公司两艘船舶分别从加拿大回国,其中有一艘船采了气象导航机构推荐的高纬度航线。途经白令海峡,该船速度快,只用了半个月左右就到达了目的地;而另一艘船却采用了中纬度习惯航行,一路顶着狂风巨浪,损失了几十万美元的货物不说,还多用了两个星期才回到港口。
气象导航要利用全球的天气监测网资料,结合船舶的具体航行要求,提出各种提议,它具有很大的实用价值。其实,气象导航本身是在为远洋航行提供综合的气象信息服务。这显示了很大的发展潜力。我国在1987年成立了气象导航中心,并在沿海气象台设立了分中心,组织成立了遍布全国沿海各大港口的海洋气象导航服务网,取得了可喜成果。
卫星遥感技术
气象卫星的估算应用比较广泛。前面说过,气象卫星还能够对农作物长势、病虫害及冻害进行监测,但这只是一方面。气象卫星能够对灾害面积进行估计,对农作物收成作出估算,甚至对各种资源,如渔业资源,能进行遥感探测,显示出其独特的本领。
举例说,早在1991年,在江淮地区发生特大洪水时,江苏省气象局农业气象中心利用接收到的气象卫星资料,估计出江苏省受淹农田面积为53.3万公顷。江苏省民政厅正是参考了这个遥感结果来分发救灾款物的。
利用卫星进行估产不是最近的事,早在二十多年前,美国为了研究国际市场的小麦价格,在麦收前两个月,利用卫星对前苏联小麦进行了测算,认为苏联产量约为9140万吨,结果后来进行核对,误差不到1%。
气象卫星是怎么利用遥感信息资料进行估产的呢?原来,植物的绿叶是进行光合作用的基本器官。一般地说,植物叶面积越大,光合作用就越强,经济产量就可能越高,这是一种植物生理机制,这种生理机制反映的信息也就通过其反射光谱的不同波段反映出来。当作物叶子遭受干旱、病虫害时,叶片的含水量会减少,叶绿素减少,光合作用也相应减弱,此时叶绿素吸收蓝光、红光能力降低。同时,作物在不同的生长和发育阶段,由于叶片的叶绿素含量和内部结构不同,它们的光谱反映曲线也会不同。根据这种原理,气象卫星就可以捕捉到作物的生长情况,进而推算未来的收成。
美国的第三代业务极轨气象卫星,在作物估产方面成绩不校该卫星在运行过程中,每天有四次扫过同一具体地点,在无云的地区,它们可以很快地反映植物叶绿素对光的吸收率和反射率,通过反射率值可以算出绿度值,通过绿度值就可以监测作物生长状况,进而估计作物产量。
1985年我国就在天气系统开展了遥感综合测产项目,1990年正式投入业务运行。实践证明,该技术对农作物的估产具有迅速、宏观、准确的特点,可以弥补传统农业估产时间长、效率低的不足。
利用气象卫星遥感渔业资源的原理与小麦估产有所不同。应用气象卫星可以用红外遥感仪器测出海水表面温度,在绘出海水表层温度分布等值线图后,就可以根据鱼类生活规律与海水温度的关系来确定渔场位置,并绘成渔海况速报图。美国、日本已有渔海况速报系统,它包括卫星海况图和渔海况图。它们可以作为渔民海洋捕捞业的重要参考。
跨世纪的造福工程
面对灾害,虽然我们有种种措施和办法,但不管是天气预报也好,监测也好,人工影响局部天气也好,其实都只是一种治标不治本的办法。按医学的一句话,就叫“头痛医头,脚痛医脚”。恩格斯曾有一句话说,人类对大自然的每一次索取,都会受到大自然的报复和惩罚。这一点也不为过。由于人类滥伐森林,过分采取地下水,人口膨胀,大量排入二氧化碳和二氧化硫,使世界气候日益恶化。有科学家认为,目前的一些异常气候现象,就与人类对气候环境的破坏,特别是与温室效应有关。
那么,有人也许会问,有没有办法恢复原来的气候,或者更恰当地说,能否采取人工措施去改造气候向良性方向发展呢?当然可以。其实,如前面几节所述的,一些国家开始限制二氧化碳、二氧化硫的排放,就是减少酸雨和温室效应产生的办法,从长远的角度来看,它们是会对未来气候产生影响的。
可是,还有别的影响气候的有效措施吗?有。植树造林,绿化家园,大量种草,兴修各种水利工程就是一种可取的方法。我国在这方面做得很有特色,如兴建三北防护林,设立了一个植树日(3月12日)。经过几十年努力,我国的森林覆盖率上升了几个百分点,这是了不起的成就。实际上,植树造林、绿化祖国,本身是造福子孙的世纪工程。过去有一句话说,“前人栽树,后人乘凉”,不就是说增加了大气湿度,降低了大气温度、使气候好转了吗?
但是,改造气候本身是一个系统工程,它需要我们的不懈努力。在大力种草、植树、搞绿化的同时,还应合理砍伐树木,修好各种水利设施,以利于防洪泄涝,减少植被的破坏。而且,如减少大气污染,限制废气排放量,合理用水,利用清洁能源,如风能、电能、核能等,也不是能容易做到的事。
此外,由于大气没有国界,海水也无国界,真正要使气候向良性方向发展,还需要全世界各国的携手努力,单就某个国家是不行的。
绝妙的人造气候
有利的气候条件能使工作效率大大提高,而不利的气候条件会使工作效率明显下降。比如,阴雨连绵会使人情绪低落,甚至意志消沉,从而严重影响人们的工作效率。大自然的气候虽然不可抗拒,但我们却能用现代科学方法创造有利的气候条件,来提高人们的工作效率。为了克服不良气候的影响,世界上许多国家出现了“人造气候热”。
如在法国,每当阴雨连绵的天气,刚上班时,一些工厂在车间里用灯光把车间打扮成旭日东升、曙光万道的景象;临近中午时,华灯齐射,呈现出晴空万里、“阳光”灿烂的气氛;快下班了,车间里又是一番“太阳”西沉,晚霞四射的景象。科学家们指出,这样能振奋人的精神,使工作效率提高10%。
让我们浏览一下日本大阪的一条地下街吧。这条街叫“虹”,它长1000米,宽50米,高6米。全街由4个广场和3个商场相隔排列而成。入口处是“爱的广潮。广场顶部华灯高悬,地上花坛星罗棋布,四周墙壁上装饰着以古代爱情传说为主题的浮雕和壁画。穿过一个商场,便来到了“光的广潮。
广场中央是一个养鱼池,广场顶部悬挂着由1600只彩灯组成的“星空”。池水与灯光辉映,构成一幅奇幻的图画。再过一个商场,便是“水的广潮,广场顶部2000只喷口向下的喷射水柱,宛如悬挂的瀑布。在七色灯光照射之下,“瀑布”上映出一条弧形的“彩虹”,景象绚丽迷人。这条街因此而得名为“虹”。再穿过3个商场,便来到出口处“绿的广潮。这里绿树如茵,花草满地,显示出一派东方园林的风格。试想,当人们置身这里,工作效率又怎么能不提高呢?!
“人造气候”是当代科学的结晶。它不仅可以提高工作效率,还可以用来防治疾玻科学家们根据名山大川、海滨盆地能治病强身的道理,建立起了“人造气候室”,用人工办法来模拟特殊的气象条件,治疗疾病,取得了很好的效果。这是“人造气候”的又一妙用!
气象与商业
村越是日本一家超级市场的经理,以前,他因无法确定每天的进货品种和数量而愁眉不展。后来,一个在气象协会工作的朋友找到他,帮他开发了一个叫“第二天来店购物人数预测体系”的软件。这个软件只要把次日的天气预报输入电脑,这个体系就能准确测出第二天顾客的多少。试用1个星期后,村越一扫愁容。每天下午3点,他根据“体系”测出的数据吩咐采购员去进货,总是很合适;店里因过剩食品造成的浪费降到了最底限度,生意越来越兴隆了。
气象学在现代经济生活中就这样发挥着日益重要的作用。国外已有很多企业把商业与气象学的关系列入了必修课,企业家们则巧妙运用这门科学,更好地制定经营策略。
极小的气温变化对人体影响可能微不足道,但对全球经济却会产生意想不到的结果。假如世界平均气温下降1℃,那么:——全球棉花歉收,损失达22亿美元;——全球水稻歉收,损失达10亿美元;——全球海洋资源收入减少1862亿美元。
据日本气象专家的调查结果表明,大多数商品的销售量都受气温的影响。各种商品最畅销的气温是:10℃时是防寒衣料,15℃时是长袖女罩衫,20℃时是空调机、夏装,22℃时是啤酒,23℃时是浴衣,24℃时是游泳衣、凉鞋、拖鞋,26℃时是蚊蝇杀虫剂,27℃时是西瓜,29℃时是阳伞,30℃时是刨冰。商场老板因地制宜,巧妙地运用气象信息,有的放矢组织货源、销售,使盈利大增。
1994年武汉商场支付3000元信息费,与武汉中心气象台签定了气象信息供需合同,及时得到“今年夏季气温比常年偏高”的信息,便果断决定进大批空调机扩大销售。而其他商场因无气象信息,对一下变“火”的空调机措手不及,痛失获利良机。武汉商场3000元信息费换来了百倍的利润。随着市经济的深入发展,上海一些老板的“气象意识”也大大增强。上海第六百货商店的经理们“看天做生意”,把气象预报用于决策经营。1990年他们根据上海气象台提供的“夏季上海将出现高温早,持续时间长”的信息,举办电风扇展销会,仅20天时间,销售额突破百万元。
如今,国外发达国家十分重视气象信息的利用,并把它作为衡量市场竞争能力的重要因素。德国一些啤酒公司都专门设有气象研究室,把气象信息做为调整啤酒销售量的重要参数。据分析,盛夏气温上升1℃,啤酒销售量增加230万瓶,日本开发的“第二天来店购物人数预测”软件,每天下午3点预测次日来客人数多少。预测结果表明,雨天的顾客至少要比平日减少20%。
随着商业气象学的悄然兴趣,中外许多精明的企业家、大亨们已巧妙地利用气象信息生财致富,仅借“雨”生财就成为商界一个景观。
借雨促销
有一年冬季,广州南方大厦经理从气象台得知来年春季广州地区雨量多、雨季长的气象信息后,便叫采购员打听哪里有雨伞供货。采购员不知何意,奉命从事。几经打听,得知深圳一家公司积压了20万把雨伞,正苦于无法打发。经理当机立断,要采购员将雨伞全部兜揽过来,采购员当时感到十分惊讶,将这20万把雨伞100多万元巨款的赌注压在老天爷身上,简直有点太玄了!第二年春天,果然如预报所言,广州地区进入了多雨季节,那雨一场紧似一常由于许多商店事先未备好货源,城里的人为买雨伞都纷纷往南方大厦跑。20万把雨伞一售而空,净赚了60多万元。南方大厦终于以借“雨”营销赢得了一场市场竞争的胜利。
雨中看美人
“下雨天也要打扮!”这是雨季后东京举行的“雨季时装大会”的口号。
他们由6名模特儿表演的“雨季时装”,展出40款雨衣、30款雨散雨帽,令人目不暇接。一款由两种颜色和花纹搭配的方雨伞,配上外套、裙裤,给人以和谐、美丽、潇洒之感。难怪有人说,目前在东京的下雨天气也有“雨中看美人”的情趣。雨天同样能给商人带来良好的经济效益。
引雨进屋
为了“引雨进屋”,东京的一些大型体育馆均利用大屋顶收集雨水,然后送至地下大水池贮存,以备急用,既解难,又省钱。
位于东京都的新建科技馆,每逢举行相扑大赛时,每天观众可达1.1万人。为此每天用于冷气机或厕所等的用水量超过200吨,一旦遇到缺水或水供给量受了限时,要举行相扑大赛就成了问题。于是,他们从8360平方米屋顶上收集的雨水贮存于容量1000吨的地下大水池内。该馆的年用水量为23700吨左右,其中杂用水9900吨,约占总用水量的40%,地下大水池总贮水量可达7200吨,约占杂用水总量70%。若按东京自来水费计算,可节约2523万日元!雨水成了“液体黄金”。
借雨做广告
日本著名的衣料店“越后屋”特备有很多雨桑每逢下雨时,许多未带雨伞的顾客或过路的人行人纷纷聚集在屋檐下或店堂里避雨。此时店员便拿出一把把雨伞,“借”给他们,让他们能早点回家。这些雨伞上都印有醒目的“越后屋”三个大字。客人们打着这样的伞在雨中行走,路人都以为这满街的“越后屋”雨伞定是流行的“雨伞新潮”或质量过硬而受青睐的商品,于是纷纷前去该店购买。即便有人“忘”了归还雨伞也无妨,“越后屋”反倒乐得增加几个“永久的活广告”。店里损失了许多雨伞,但却引来了更多的顾客上门。
雨水出口
善于经营的日本商人发现,水在阿拉伯国家是贵重的商品。在那里,常年数月才下一点雨,唯靠淡水解救水荒,而一瓶淡水的价格相当于40瓶石油的价格,真是滴水贵如油!于是,便着手向阿拉伯国家出口雨水,从而标志着雨水利用已在日本显示出独特的价值。第一个向日本购买雨水的国家是阿拉伯联合酋长国,该国每年的雨水进口量为2000万立方米,主要用于农作物灌溉。此外,日本还积极扩大对其他阿拉伯国家的雨水出口,以求获得大量外汇。
气象与军事
关于气象在战争中的重要作用,早在中国春秋时期的《孙子兵法》中就有论述:“兵者,国之大事,死生之地,存亡之道,不可不察也。故经之以五事,极之以计而索其情:一曰道,二曰天,三曰地,四日将,五曰法。”“天者、阴阳、寒暑、时制也。”
这里“阴阳”是指昼夜、晴雨等天时气象变化;“寒暑”指气温高低;“时制”则是四季时气的更替。孙子明确提出了将帅必须懂天时气象的观点。
从古至今,气象战的范例比比皆是,像诸葛亮借东风火烧赤壁,二战中的莫斯科、斯大林格勒保卫战,气候都决定了战役的结果。1941年6月22日希特勒对前苏联发动闪电战,企图10天之内占领莫斯科。然而这个战争狂人对冬季作战却毫无准备。在漫长而寒冷的冬天,德军既无棉衣,也无取暖设备,冻死冻伤者不计其数;严寒还使德军的机械装备牢牢地冻在地上而无法使用。同时土生士长的前苏联士兵却不仅适应这种气候,还擅长雪地作战,最终打得德军节节败退。
而现代战争节奏迅速、突击性强的特点对气象服务提出了更高的要求。
海湾战争中,美军气象部门在伊拉克入侵科威特不久,就完成了海湾地区的气候分析报告,认为“对伊作战应选择在12月到次年的3月”,并具体分析了符合进攻条件的几个时段,结果,1月17日发动的首次进攻获得了成功。
气象与体育
1968年墨西哥奥运会上,美国跳远名将鲍勃·比蒙奋力跃出8.90米,超出原世界纪录0.55米,着实令人咋舌。但这一成绩其实是巧妙地借助了墨酉哥城的高海拔和当时2米/秒的顺风。中国的朱建华就无此幸运。1987年11月在广州举行的六运会期间,寒流突至,一夜气温骤降21℃,并刮起9~10级的阵风。赛场上朱建华全身发抖,动作走样,破世界纪录的雄心付诸东流。
竞技场上的形势就是如此受着天气的左右。因为天气导致的体育悲剧也屡见不鲜。1912年斯德哥尔摩天运会的马拉松比赛中,葡萄牙选手卡梅德·拉萨罗因难耐高温而客死他乡;1990年10月在摩纳哥举行的第2届摩托艇世界锦标赛上,前届冠军卡西拉吉驾艇全速行驶时,被1.5米高的浪头抛出海面又打入水里,终致船毁人亡;1984年4月初,印尼雅加达正在进行一场足球赛时天气骤变,闪电击中球场,1名运动员当场毙命。
气象对体育运动的影响是多方面的,日照、温度、湿度、气压、降水、大雾,都会影响比赛。以冰上和雪上运动为例:温度和太阳充足照射会影响雪的粘性,从而影响到高山和越野滑雪者对器具的选择;雾和降雪会降低许多室外项目特别是高山滑雪所需要的能见度;温度和湿度会影响滑冰、雪撬比赛中冰的质量以及人造雪的制造。在1984年萨拉热窝冬季奥运会期间,猛烈的北风风速达50米/秒,4天的积雪量达到50~90厘米,速降滑雪比赛被迫延期。而1972年在奥地利因布鲁斯克举行的第12届冬季奥运会上,却因降雪不多、积雪稀少,奥地利政府不得不出动军队和几百辆汽车,从意大利边界的布伦纳山运雪来建造滑雪跑道。
1945年伦敦大雪造成一出闹剧。在一年一度的欧洲足球冠军杯赛上,英格兰阿森纳俱乐部队迎战前苏联迪纳摩队,两队旗鼓相当。距下半场结束还有10分钟时,2∶2的僵局仍未打破。这时,一场大雾突然袭来,场上一片混沌,球员看不清号码,球门也隐入雾中,双方都想趁乱取胜,但能见度实在太低,屡屡射门无果。眼看比赛就要结束,被罚下场的迪纳摩队球员瓦西里心急如焚,趁裁判不备,溜入场中,一脚截住不知是哪边传来的球,迅速突入禁区,起脚劲射破网,紧接着,比赛结束的笛声也响了。瓦西里一阵狂喜。谁料裁判却宣布阿森纳队获胜。原来瓦西里竟将球射入了自家的大门。
1996年是现代奥林匹克运动会诞生100周年。世界气象日之所以选择“气象为体育服务”作为主题,目的在于强调天气气候信息对于人们的运动和休闲活动,以及有关此类活动的组织工作的价值和意义。事实上,人们已越来越重视天气和体育之间的关系。以奥运会所需的气象保障为例,提前数年就要由常规的国家预测网提供奥运会申办城市的一般气候信息;一旦承办城市选定,便立即开始研究整理当地的特殊气候信息,确定对各种不同比赛项目至关重要的天气要素,为每一个运动会场提供详细的气候资料,作为运动员备战训练时的参考。
我国气象为体育服务正式开展是在1987年第6届全运会。但系统地进行气象与体育关系的研究是从1983年第5届全运会开始的。
1983年第5届全运会原定于9月16日在上海江湾体育场进行。但天公不作美,从16日早晨开始连续下了两天暴雨,使江湾体育场变成汪洋一片,主席台下水深齐膝,场内跑道上也有20厘米深的积水,场地四周装上18台水泵哗哗向外吐水也收效甚微。为了使全国人民能在电视机旁看到隆重的开幕式,体育健儿时刻待命。体育场准备了10,000件雨衣。3个直径4米多的特大花篮被雨淋了,人们通宵达旦赶制纸花……可惜,暴雨如注,整个计划被打乱了。
这次沉痛的教训,引起了气象科技人员的重视,开始广泛收集资料,进行气象与体育关系的研究,经过几年的奋斗已取得了一些初步成果,并运用到1987年第6届全运会气象服务中去。
1990年,在北京举办的第11届亚运会的气象服务工作做得相当出色,国家体委主任伍绍祖曾对气象服务给予高度评价。这里只举几个例子:开幕式那天上午还在下小雨,而且北京四周都在下雨。傍晚开幕式是否会晴天?经过气象服务中心预报组的认真会商,很肯定地向组委会报告:开幕式时不会下雨。果然,开幕式开始前,天空豁然开朗。
自行车比赛原定9月26日举行,但天气预报该日有雨,竞赛委员会根据预报改在27日晴天举行。果真27日天气异常晴朗,周玲美破了一公里计时赛的世界纪录。
9月26日进行赛艇比赛时,天气下雨,气温又低。由于25日已预报出这种天气,中国队及时采取了措施,运动员换上厚衣,调正了划桨技术方案,囊括了14枚金牌。
1993年第1届东亚运动会于5月9~18日在上海举行。为了确保运动会顺利召开,特地成立了气象服务中心。
第1届东亚运动会开幕式成功与否非同小可。一是我国正在争取2000年奥运会主办权;二是世界著名人士、国际奥委会主席萨马兰奇要来参加开幕式。故开幕式决不能改期,并且要求保证在好天气下举行。
4月25日,气象服务中心正式发布了开幕式的天气展望。虽然排除了有中等以上降雨的可能,但并未排除有小雨的可能性,因5月9日前后从气候上分析,上海下雨的概率还比较高。组委会副主席龚学平副市长获得上述信息后,多次向气象中心提出,万一5月9日下雨是否可以搞人工消雨?为此,气象服务中心咨询了北京中国气象科学研究院人工影响天气研究所的专家。5月2日,一份《关于东亚运动会开幕式时段上海上空人工消雨实施方案的建议》书送交给龚副市长。次日,龚副市长毅然决定在开幕式时做好人工消雨的准备,确保开幕式顺利进行。在短短几天里,既要请到北京人工消雨专家,又要取得中国人民解放军空军司令部的大力支持和驻沪空军的密切合作,动用侦察机、调用正在外地执行任务的专搞人工消雨的运输机等,还要购置必要工具、设备,以及需将几吨重的人工消雨催化剂送往机抄…为确保开幕式人工消雨成功,5月8日和9日上午,进行了三次人工消雨作业,获得成功。5月9日下午开幕式终于在晴朗的天空条件下胜利召开,宏伟、壮观、气势磅礴的开幕式得到国家主席江泽民和国际奥委会主席萨马兰奇的高度评价。
多次大型运动会的气象服务成功,标志着我国气象为体育服务已经逐渐成熟,气象为体育服务确实大有可为。
1996年5月7日,被誉为“东方神鹿”的王军霞在南京举行的全国田径奥运选拔赛女子万米预赛中,以31分1.76秒的好成绩,创造了世界纪录,比1995年的世界冠军成绩快出3秒多。赛后,王军霞对采访她的记者说,教练本来只要求她在这一天破自己1995年的最好成绩,没料 7日天气那么好,气温适宜,没有太阳,又没什么风,觉着这是一个难得的好天气,于是就和教练商定,尽量把好成绩“放”在7日。翌日《新民晚报》以《好天气助我成功》为题,报道了王军霞创造佳绩的“秘密”。
气象因素对长跑的影响是非常明显的。首先是气温:如果气温偏高,运动员的体内能量消耗增大,血浆量减少,易造成中枢神经疲劳,肌肉的活动能力显著下降;而气温过于偏低,肌肉又易发生痉挛,关节部位也容易损伤。
专家研究表明,气温在8~15℃范围,对长跑最为有利。
其次是湿度,空气湿度过大,不利于汗液的蒸发和身体的散热,容易使运动能力下降,甚至使人出现昏迷现象;湿度太小,空气过于干燥,长跑选手排汗过多,则容易脱水,自然也会影响成绩。比较适宜长跑的空气相对湿度范围是30%~60%。
风对短跑的影响特别大,对长跑的影响则相对较小,只要风速在5米/秒以内,跑道又是环形,则风的利(散热作用)和弊(逆向阻力)可以认为互相抵消,可忽略不计。如果风速过大或是单向路线而全程逆风,则要考虑风的不利影响。
一些有经验的长跑选手和教练常常利用气象条件创造好成绩。在1986年的北京国际马拉松赛上,日本两名选手利用当天的良好天气(气温8.2℃,风速1米/秒),创造了在一次马拉松比赛中,同一国家的两名选手同时突破2小时8分大关的好成绩。时隔一年,在1987年的这项比赛中,因北京刮大风,冠军成绩比1986年差了将近5分钟。
下一页 尾页 共2页
返回书籍页