必读网 - 人生必读的书

TXT下载此书 | 书籍信息


(双击鼠标开启屏幕滚动,鼠标上下控制速度) 返回首页
选择背景色:
浏览字体:[ ]  
字体颜色: 双击鼠标滚屏: (1最慢,10最快)

时间简史

_4 史蒂芬·霍金(英国)
任何方向看都一样(图5.1-i)。而自旋为1的粒子像一个箭头:从不同方向看是不同的
(图5.1-ii)。只有把当它转过完全的一圈(360°)时,这粒子才显得是一样。自旋为
2的粒子像个双头的箭头(图5.1-iii):只要转过半圈(180°),看起来便是一样的
了。类似地,更高自旋的粒子在旋转了整圈的更小的部分后,看起来便是一样的。所有
这一切都是这样的直截了当,但惊人的事实是,有些粒子转过一圈后,仍然显得不同,
你必须使其转两整圈!这样的粒子具有1/2的自旋。
图5.1
宇宙间所有已知的粒子可以分成两组:组成宇宙中的物质的自旋为1/2的粒子;在
物质粒子之间引起力的自旋为0、1和2的粒子。物质粒子服从所谓的泡利不相容原理。这
是奥地利物理学家沃尔夫冈·泡利在1925年发现的,他并因此获得1945年的诺贝尔奖。
他是个模范的理论物理学家,有人这样说,他的存在甚至会使同一城市里的实验出毛病!
泡利不相容原理是说,两个类似的粒子不能存在于同一个态中,即是说,在不确定性原
理给出的限制内,它们不能同时具有相同的位置和速度。不相容原理是非常关键的,因
为它解释了为何物质粒子在自旋为0、1和2的粒子产生的力的影响下不会坍缩成密度非常
之高的状态的原因:如果物质粒子几乎在相同位置,则它们必须有不同的速度,这意味
着它们不会长时间存在于同一处。如果世界创生时不相容原理不起作用,夸克将不会形
成不相连的、很好定义的质子和中子,进而这些也不可能和电子形成不相连的、很好定
义的原子。所有它们都会坍缩形成大致均匀的稠密的“汤”。
直到保尔·狄拉克在1928年提出一个理论,人们才对电子和其他自旋1/2的粒子有
了相当的理解。狄拉克后来被选为剑桥的卢卡逊数学教授(牛顿曾经担任这一教授位置,
目前我担任此一位置)。狄拉克理论是第一种既和量子力学又和狭义相对论相一致的理
论。它在数学上解释了为何电子具有1/2的自旋,也即为什么将其转一整圈不能、而转
两整圈才能使它显得和原先一样。它并且预言了电子必须有它的配偶——反电子或正电
子。1932年正电子的发现证实了狄拉克的理论,他因此获得了1933年的诺贝尔物理奖。
现在我们知道,任何粒子都有会和它相湮灭的反粒子。(对于携带力的粒子,反粒子即
为其自身。)也可能存在由反粒子构成的整个反世界和反人。然而,如果你遇到了反你,
注意不要握手!否则,你们两人都会在一个巨大的闪光中消失殆尽。为何我们周围的粒
子比反粒子多得多?这是一个极端重要的问题,我将会在本章的后部分回到这问题上来。
在量子力学中,所有物质粒子之间的力或相互作用都认为是由自旋为整数0、1或2的
粒子承担。物质粒子——譬如电子或夸克——发出携带力的粒子,由于发射粒子所引起
的反弹,改变了物质粒子的速度。携带力的粒子又和另一物质粒子碰撞从而被吸收。这
碰撞改变了第二个粒子的速度,正如同两个物质粒子之间存在过一个力。
携带力的粒子不服从泡利不相容原理,这是它的一个重要的性质。这表明它们能被
交换的数目不受限制,这样就可以产生根强的力。然而,如果携带力的粒子具有很大的
质量,则在大距离上产生和交换它们就会很困难。这样,它们所携带的力只能是短程的。
另一方面,如果携带力的粒子质量为零,力就是长程的了。在物质粒子之间交换的携带
力的粒子称为虚粒子,因为它们不像“实”粒子那样可以用粒子探测器检测到。但我们
知道它们的存在,因为它们具有可测量的效应,即它们引起了物质粒子之间的力,并且
自旋为0、1或2的粒子在某些情况下作为实粒子而存在,这时它们可以被直接探测到。对
我们而言,此刻它们就呈现出为经典物理学家所说的波动形式,例如光波和引力波;当
物质粒子以交换携带力的虚粒子的形式而相互作用时,它们有时就可以被发射出来。
(例如,两个电子之间的电排斥力是由于交换虚光子所致,这些虚光子永远不可能被检
测出来;但是如果一个电子穿过另一个电子,则可以放出实光子,它以光波的形式为我
们所探测到。)
携带力的粒子按照其携带力的强度以及与其相互作用的粒子可以分成四种。必须强
调指出,将力划分成四种是种人为的方法;它仅仅是为了便于建立部分理论,而并不别
具深意。大部分物理学家希望最终找到一个统一理论,该理论将四种力解释为一个单独
的力的不同方面。确实,许多人认为这是当代物理学的首要目标。最近,将四种力中的
三种统一起来已经有了成功的端倪——我将在这章描述这些内容。而关于统一余下的另
一种力即引力的问题将留到以后再讨论。
第一种力是引力,这种力是万有的,也就是说,每一粒子都因它的质量或能量而感
受到引力。引力比其他三种力都弱得多。它是如此之弱,以致于若不是它具有两个特别
的性质,我们根本就不可能注意到它。这就是,它会作用到非常大的距离去,并且总是
吸引的。这表明,在像地球和太阳这样两个巨大的物体中,所有的粒子之间的非常弱的
引力能迭加起来而产生相当大的力量。另外三种力或者由于是短程的,或者时而吸引时
而排斥,所以它们倾向于互相抵消。以量子力学的方法来研究引力场,人们把两个物质
粒子之间的引力描述成由称作引力子的自旋为2的粒子所携带。它自身没有质量,所以所
携带的力是长程的。太阳和地球之间的引力可以归结为构成这两个物体的粒子之间的引
力子交换。虽然所交换的粒子是虚的,它们确实产生了可测量的效应——它们使地球绕
着太阳公转!实引力构成了经典物理学家称之为引力波的东西,它是如此之弱——并且
要探测到它是如此之困难,以致于还从来未被观测到过。
另一种力是电磁力。它作用于带电荷的粒子(例如电子和夸克)之间,但不和不带
电荷的粒子(例如引力子)相互作用。它比引力强得多:两个电子之间的电磁力比引力
大约大100亿亿亿亿亿(在1后面有42个0)倍。然而,共有两种电荷——正电荷和负电荷。
同种电荷之间的力是互相排斥的,而异种电荷则互相吸引。一个大的物体,譬如地球或
太阳,包含了几乎等量的正电荷和负电荷。由于单独粒子之间的吸引力和排斥力几乎全
抵消了,因此两个物体之间纯粹的电磁力非常小。然而,电磁力在原子和分子的小尺度
下起主要作用。在带负电的电子和带正电的核中的质子之间的电磁力使得电子绕着原子
的核作公转,正如同引力使得地球绕着太阳旋转一样。人们将电磁吸引力描绘成是由于
称作光子的无质量的自旋为1的粒子的交换所引起的。而且,这儿所交换的光子是虚粒子。
但是,电子从一个允许轨道改变到另一个离核更近的允许轨道时,以发射出实光子的形
式释放能量——如果其波长刚好,则为肉眼可以观察到的可见光,或可用诸如照相底版
的光子探测器来观察。同样,如果一个光子和原子相碰撞,可将电子从离核较近的允许
轨道移动到较远的轨道。这样光子的能量被消耗殆尽,也就是被吸收了。
第三种力称为弱核力。它制约着放射性现象,并只作用于自旋为1/2的物质粒子,
而对诸如光子、引力子等自旋为0、1或2的粒子不起作用。直到1967年伦敦帝国学院的阿
伯达斯·萨拉姆和哈佛的史蒂芬·温伯格提出了弱作用和电磁作用的统一理论后,弱作
用才被很好地理解。此举在物理学界所引起的震动,可与100年前马克斯韦统一了电学和
磁学并驾齐驱。温伯格——萨拉姆理论认为,除了光子,还存在其他3个自旋为1的被统
称作重矢量玻色子的粒子,它们携带弱力。它们叫W+(W正)、W-(W负)和Z0(Z零),
每一个具有大约100吉电子伏的质量(1吉电子伏为10亿电子伏)。上述理论展现了称作
自发对称破缺的性质。它表明在低能量下一些看起来完全不同的粒子,事实上只是同一
类型粒子的不同状态。在高能量下所有这些粒子都有相似的行为。这个效应和轮赌盘上
的轮赌球的行为相类似。在高能量下(当这轮子转得很快时),这球的行为基本上只有
一个方式——即不断地滚动着;但是当轮子慢下来时,球的能量就减少了,最终球就陷
到轮子上的37个槽中的一个里面去。换言之,在低能下球可以存在于37个不同的状态。
如果由于某种原因,我们只能在低能下观察球,我们就会认为存在37种不同类型的球!
在温伯格——萨拉姆理论中,当能量远远超过100吉电子伏时,这三种新粒子和光子
的行为方式很相似。但是,大部份正常情况下能量要比这低,粒子之间的对称就被破坏
了。W+、W-和Z0得到了大的质量,使之携带的力变成非常短程。萨拉姆和温伯格提出
此理论时,很少人相信他们,因为还无法将粒子加速到足以达到产生实的W+、W-和Z0
粒子所需的一百吉电子伏的能量。但在此后的十几年里,在低能量下这个理论的其他预
言和实验符合得这样好,以至于他们和也在哈佛的谢尔登·格拉肖一起被授予1979年的
物理诺贝尔奖。格拉肖提出过一个类似的统一电磁和弱作用的理论。由于1983年在CERN
(欧洲核子研究中心)发现了具有被正确预言的质量和其他性质的光子的三个带质量的
伴侣,使得诺贝尔委员会避免了犯错误的难堪。领导几百名物理学家作出此发现的卡拉
·鲁比亚和发展了被使用的反物质储藏系统的cERN工程师西蒙·范德·米尔分享了1984
年的诺贝尔奖。(除非你已经是巅峰人物,当今要在实验物理学上留下痕迹极其困难!)
第四种力是强作用力。它将质子和中子中的夸克束缚在一起,并将原子中的质子和
中子束缚在一起。一般认为,称为胶子的另一种自旋为1的粒子携带强作用力。它只能与
自身以及与夸克相互作用。强核力具有一种称为禁闭的古怪性质:它总是把粒子束缚成
不带颜色的结合体。由于夸克有颜色(红、绿或蓝),人们不能得到单独的夸克。反之,
一个红夸克必须用一串胶子和一个绿夸克以及一个蓝夸克联结在一起(红+绿+蓝=白)。
这样的三胞胎构成了质子或中子。其他的可能性是由一个夸克和一个反夸克组成的对
(红+反红,或绿+反绿,或蓝+反蓝=白)。这样的结合构成称为介子的粒子。介子
是不稳定的,因为夸克和反夸克会互相湮灭而产生电子和其他粒子。类似地,由于胶子
也有颜色,色禁闭使得人们不可能得到单独的胶子。相反地,人们所能得到的胶子的团,
其迭加起来的颜色必须是白的。这样的团形成了称为胶球的不稳定粒子。
色禁闭使得人们观察不到一个孤立的夸克或胶子,这事实使得将夸克和胶子当作粒
子的整个见解看起来有点玄学的味道。然而,强核力还有一个叫做渐近自由的性质,它
使得夸克和胶子成为定义得很好的概念。在正常能量下,强核力确实很强,它将夸克很
紧地捆在一起。但是,大型粒子加速器的实验指出,在高能下强作用力变得弱得多,夸
克和胶子的行为就像自由粒子那样。图5.2是张一个高能质子和一个反质子碰撞的照片。
碰撞产生了几个几乎自由的夸克,并引起了在图中可以看到的“喷射”轨迹。
图5.2一个质子和一个反质子在高能下碰撞,产生了一对几乎自由的夸克。
对电磁和弱力统一的成功,使许多人试图将这两种力和强核力合并在所谓的大统一
理论(或GUT)之中。这名字相当夸张,所得到的理论并不那么辉煌,也没能将全部力都
统一进去,因为它并不包含引力。它们也不是真正完整的理论,因为它们包含了许多不
能从这理论中预言而必须人为选择去适合实验的参数。尽管如此,它们可能是朝着完全
的统一理论推进的一步。GUT的基本思想是这样:正如前面提到的,在高能量时强核力变
弱了;另一方面,不具有渐近自由性质的电磁力和弱力在高能量下变强了。在非常高的
叫做大统一能量的能量下,这三种力都有同样的强度,所以可看成一个单独的力的不同
方面。在这能量下,GUT还预言了自旋为1/2的不同物质粒子(如夸克和电子)也会基本
上变成一样,这样导致了另一种统一。
大统一能量的数值还知道得不太清楚,可能至少有1千万亿吉电子伏特。而目前粒子
加速器只能使大致能量为100吉电子伏的粒子相碰撞,计划建造的机器的能量为几千吉电
子伏。要建造足以将粒子加速到大统一能量的机器,其体积必须和太阳系一样大——这
在现代经济环境下不太可能做到。因此,不可能在实验室里直接证实大统一理论。然而,
如同在弱电统一理论中那样,我们可以检测它在低能量下的推论。
其中最有趣的是预言是,构成通常物质的大部分质量的质子能自发衰变成诸如反电
子之类更轻的粒子。其原因在于,在大统一能量下,夸克和反电子之间没有本质的不同。
正常情况下一个质子中的三个夸克没有足够能量转变成反电子,由于测不准原理意味着
质子中夸克的能量不可能严格不变,所以,其中一个夸克能非常偶然地获得足够能量进
行这种转变,这样质子就要衰变。夸克要得到足够能量的概率是如此之低,以至于至少
要等100万亿亿亿年(1后面跟30个0)才能有一次。这比宇宙从大爆炸以来的年龄(大约
100亿年——1后面跟10个0)要长得多了。因此,人们会认为不可能在实验上检测到质子
自发衰变的可能性。但是,我们可以观察包含极大数量质子的大量物质,以增加检测衰
变的机会。(譬如,如果观察的对象含有1后面跟31个0个质子,按照最简单的GUT,可以
预料在一年内应能看到多于一次的质子衰变。)
人们进行了一系列的实验,可惜没有一个得到质子或中子衰变的确实证据。有一个
实验是用了8千吨水在俄亥俄的莫尔顿盐矿里进行的(为了避免其他因宇宙射线引起的会
和质子衰变相混淆的事件发生)。由于在实验中没有观测到自发的质子衰变,因此可以
估算出,可能的质子寿命至少应为1千万亿亿亿年(1后面跟31个0)。这比简单的大统一
理论所预言的寿命更长。然而,一些更精致更复杂的大统一理论预言的寿命比这更长,
因此需要用更灵敏的手段对甚至更大量的物质进行检验。
尽管观测质子的自发衰变非常困难,但很可能正由于这相反的过程,即质子或更简
单地说夸克的产生导致了我们的存在。它们是从宇宙开初的可以想像的最自然的方式—
—夸克并不比反夸克更多的状态下产生的。地球上的物质主要是由质子和中子,从而由
夸克所构成。除了由少数物理学家在大型粒子加速器中产生的之外,不存在由反夸克构
成的反质子和反中子。从宇宙线中得到的证据表明,我们星系中的所有物质也是这样:
除了少量当粒子和反粒子对进行高能碰撞时产生出来的以外,没有发现反质子和反中子。
如果在我们星系中有很大区域的反物质,则可以预料,在正反物质的边界会观测到大量
的辐射,该处许多粒子和它们的反粒子相碰撞、互相湮灭并释放出高能辐射。
我们没有直接的证据表明其他星系中的物质是由质子、中子还是由反质子、反中子
构成,但二者只居其一,否则我们又会观察到大量由涅灭产生的辐射。因此,我们相信,
所有的星系是由夸克而不是反夸克构成;看来,一些星系为物质而另一些星系为反物质
也是不太可能的。
为什么夸克比反夸克多这么多?为何它们的数目不相等?这数目有所不同肯定使我
们交了好运,否则,早期宇宙中它们势必已经相互湮灭了,只余下一个充满辐射而几乎
没有物质的宇宙。因此,后来也就不会有人类生命赖以发展的星系、恒星和行星。庆幸
的是,大统一理论可以提供一个解释,尽管甚至刚开始时两者数量相等,为何现在宇宙
中夸克比反夸克多。正如我们已经看到的,大统一理论允许夸克变成高能下的反电子。
它们也允许相反的过程,反夸克变成电子,电子和反电子变成反夸克和夸克。早期宇宙
有一时期是如此之热,使得粒子能量高到足以使这些转变发生。但是,为何导致夸克比
反夸克多呢?原因在于,对于粒子和反粒子物理定律不是完全相同的。
直到1956年人们都相信,物理定律分别服从三个叫做C、P和T的对称。C(电荷)对
称的意义是,对于粒子和反粒子定律是相同的;P(宇称)对称是指,对于任何情景和它
的镜像(右手方向自旋的粒子的镜像变成了左手方向自旋的粒子)定律不变;T(时间)
对称是指,如果我们颠倒粒子和反粒子的运动方向,系统应回到原先的那样;换言之,
对于前进或后退的时间方向定律是一样的。
1956年,两位美国物理学家李政道和杨振宁提出弱作用实际上不服从P对称。换言之,
弱力使得宇宙的镜像以不同的方式发展。同一年,他们的一位同事吴健雄证明了他们的
预言是正确的。她将放射性元素的核在磁场中排列,使它们的自旋方向一致,然后演示
表明,电子在一个方向比另一方向发射出得更多。次年,李和杨为此获得诺贝尔奖。人
们还发现弱作用不服从C对称,即是说,它使得由反粒子构成的宇宙的行为和我们的宇宙
不同。尽管如此,看来弱力确实服从CP联合对称。也就是说,如果每个粒子都用其反粒
子来取代,则由此构成的宇宙的镜像和原来的宇宙以同样的方式发展!但在1964年,还
是两个美国人——J·W·克罗宁和瓦尔·费兹——发现,在称为K介子的衰变中,甚至连
CP对称也不服从。1980年,克罗宁和费兹为此而获得诺贝尔奖。(很多奖是因为显示宇
宙不像我们所想像的那么简单而被授予的!)
有一个数学定理说,任何服从量子力学和相对论的理论必须服从CPT联合对称。换言
之,如果同时用反粒子来置换粒子,取镜像和时间反演,则宇宙的行为必须是一样的。
克罗宁和费兹指出,如果仅仅用反粒子来取代粒子,并且采用镜像,但不反演时间方向,
则宇宙的行为于保持不变。所以,物理学定律在时间方向颠倒的情况下必须改变——它
们不服从T对称。
早期宇宙肯定是不服从T对称的:当时间往前走时,宇宙膨胀;如果它往后退,则宇
宙收缩。而且,由于存在着不服从T对称的力,因此当宇宙膨胀时,相对于将电子变成反
夸克,这些力更容易将反电子变成夸克。然后,当宇宙膨胀并冷却下来,反夸克就和夸
克湮灭,但由于已有的夸克比反夸克多,少量过剩的夸克就留下来。正是它们构成我们
今天看到的物质,由这些物质构成了我们自己。这样,我们自身之存在可认为是大统一
理论的证实,哪怕仅仅是定性的而已;但此预言的不确定性到了这种程度,以至于我们
不能知道在湮灭之后余下的夸克数目,甚至不知是夸克还是反夸克余下。(然而,如果
是反夸克多余留下,我们可以简单地称反夸克为夸克,夸克为反夸克。)
大统一理论并不包括引力。这关系不大,因为引力是如此之弱,以至于我们处理基
本粒子或原子问题时,通常可以忽略它的效应。然而,它的作用既是长程的,又总是吸
引的,表明它的所有效应是迭加的。所以,对于足够大量的物质粒子,引力会比其他所
有的力都更重要。这就是为什么正是引力决定了宇宙的演化的缘故。甚至对于恒星大小
的物体,引力的吸引会超过所有其他的力,并使恒星自身坍缩。70年代我的工作是集中
于研究黑洞。黑洞就是由这种恒星的坍缩和围绕它们的强大的引力场所产生的。正是黑
洞研究给出了量子力学和广义相对论如何相互影响的第一个暗示——亦即尚未成功的量
子引力论的一瞥。
        
/ 第六章 黑洞
黑洞这一术语是不久以前才出现的。它是1969年美国科学家约翰·惠勒为形象描述
至少可回溯到200年前的这个思想时所杜撰的名字。那时候,共有两种光理论:一种是牛
顿赞成的光的微粒说;另一种是光的波动说。我们现在知道,实际上这两者都是正确的。
由于量子力学的波粒二象性,光既可认为是波,也可认为是粒子。在光的波动说中,不
清楚光对引力如何响应。但是如果光是由粒子组成的,人们可以预料,它们正如同炮弹、
火箭和行星那样受引力的影响。起先人们以为,光粒子无限快地运动,所以引力不可能
使之慢下来,但是罗麦关于光速度有限的发现表明引力对之可有重要效应。
1783年,剑桥的学监约翰·米歇尔在这个假定的基础上,在《伦敦皇家学会哲学学
报》上发表了一篇文章。他指出,一个质量足够大并足够紧致的恒星会有如此强大的引
力场,以致于连光线都不能逃逸——任何从恒星表面发出的光,还没到达远处即会被恒
星的引力吸引回来。米歇尔暗示,可能存在大量这样的恒星,虽然会由于从它们那里发
出的光不会到达我们这儿而使我们不能看到它们,但我们仍然可以感到它们的引力的吸
引作用。这正是我们现在称为黑洞的物体。它是名符其实的——在空间中的黑的空洞。
几年之后,法国科学家拉普拉斯侯爵显然独自提出和米歇尔类似的观念。非常有趣的是,
拉普拉斯只将此观点纳入他的《世界系统》一书的第一版和第二版中,而在以后的版本
中将其删去,可能他认为这是一个愚蠢的观念。(此外,光的微粒说在19世纪变得不时
髦了;似乎一切都可以以波动理论来解释,而按照波动理论,不清楚光究竟是否受到引
力的影响。)
事实上,因为光速是固定的,所以,在牛顿引力论中将光类似炮弹那样处理实在很
不协调。(从地面发射上天的炮弹由于引力而减速,最后停止上升并折回地面;然而,
一个光子必须以不变的速度继续向上,那么牛顿引力对于光如何发生影响呢?)直到19
15年爱因斯坦提出广义相对论之前,一直没有关于引力如何影响光的协调的理论。甚至
又过了很长时间,这个理论对大质量恒星的含意才被理解。
为了理解黑洞是如何形成的,我们首先需要理解一个恒星的生命周期。起初,大量
的气体(大部分为氢)受自身的引力吸引,而开始向自身坍缩而形成恒星。当它收缩时,
气体原子相互越来越频繁地以越来越大的速度碰撞——气体的温度上升。最后,气体变
得如此之热,以至于当氢原子碰撞时,它们不再弹开而是聚合形成氦。如同一个受控氢
弹爆炸,反应中释放出来的热使得恒星发光。这增添的热又使气体的压力升高,直到它
足以平衡引力的吸引,这时气体停止收缩。这有一点像气球——内部气压试图使气球膨
胀,橡皮的张力试图使气球缩小,它们之间存在一个平衡。从核反应发出的热和引力吸
引的平衡,使恒星在很长时间内维持这种平衡。然而,最终恒星会耗尽了它的氢和其他
核燃料。貌似大谬,其实不然的是,恒星初始的燃料越多,它则燃尽得越快。这是因为
恒星的质量越大,它就必须越热才足以抵抗引力。而它越热,它的燃料就被用得越快。
我们的太阳大概足够再燃烧50多亿年,但是质量更大的恒星可以在1亿年这么短的时间内
用尽其燃料,这个时间尺度比宇宙的年龄短得多了。当恒星耗尽了燃料,它开始变冷并
开始收缩。随后发生的情况只有等到本世纪20年代末才初次被人们理解。
1928年,一位印度研究生——萨拉玛尼安·强德拉塞卡——乘船来英国剑桥跟英国
天文学家阿瑟·爱丁顿爵士(一位广义相对论家)学习。(据记载,在本世纪20年代初
有一位记者告诉爱丁顿,说他听说世界上只有三个人能理解广义相对论,爱丁顿停了一
下,然后回答:“我正在想这第三个人是谁”。)在他从印度来英的旅途中,强德拉塞
卡算出在耗尽所有燃料之后,多大的恒星可以继续对抗自己的引力而维持自己。这个思
想是说:当恒星变小时,物质粒子靠得非常近,而按照泡利不相容原理,它们必须有非
常不同的速度。这使得它们互相散开并企图使恒星膨胀。一颗恒星可因引力作用和不相
容原理引起的排斥力达到平衡而保持其半径不变,正如在它的生命的早期引力被热所平
衡一样。
然而,强德拉塞卡意识到,不相容原理所能提供的排斥力有一个极限。恒星中的粒
子的最大速度差被相对论限制为光速。这意味着,恒星变得足够紧致之时,由不相容原
理引起的排斥力就会比引力的作用小。强德拉塞卡计算出;一个大约为太阳质量一倍半
的冷的恒星不能支持自身以抵抗自己的引力。(这质量现在称为强德拉塞卡极限。)苏
联科学家列夫·达维多维奇·兰道几乎在同时也得到了类似的发现。
这对大质量恒星的最终归宿具有重大的意义。如果一颗恒星的质量比强德拉塞卡极
限小,它最后会停止收缩并终于变成一颗半径为几千英哩和密度为每立方英寸几百吨的
“白矮星”。白矮星是它物质中电子之间的不相容原理排斥力所支持的。我们观察到大
量这样的白矮星。第一颗被观察到的是绕着夜空中最亮的恒星——天狼星转动的那一颗。
兰道指出,对于恒星还存在另一可能的终态。其极限质量大约也为太阳质量的一倍
或二倍,但是其体积甚至比白矮星还小得多。这些恒星是由中子和质子之间,而不是电
子之间的不相容原理排斥力所支持。所以它们被叫做中子星。它们的半径只有10英哩左
右,密度为每立方英寸几亿吨。在中子星被第一次预言时,并没有任何方法去观察它。
实际上,很久以后它们才被观察到。
另一方面,质量比强德拉塞卡极限还大的恒星在耗尽其燃料时,会出现一个很大的
问题:在某种情形下,它们会爆炸或抛出足够的物质,使自己的质量减少到极限之下,
以避免灾难性的引力坍缩。但是很难令人相信,不管恒星有多大,这总会发生。怎么知
道它必须损失重量呢?即使每个恒星都设法失去足够多的重量以避免坍缩,如果你把更
多的质量加在白矮星或中子星上,使之超过极限将会发生什么?它会坍缩到无限密度吗?
爱丁顿为此感到震惊,他拒绝相信强德拉塞卡的结果。爱丁顿认为,一颗恒星不可能坍
缩成一点。这是大多数科学家的观点:爱因斯坦自己写了一篇论文,宣布恒星的体积不
会收缩为零。其他科学家,尤其是他以前的老师、恒星结构的主要权威——爱丁顿的敌
意使强德拉塞卡抛弃了这方面的工作,转去研究诸如恒星团运动等其他天文学问题。然
而,他获得1983年诺贝尔奖,至少部分原因在于他早年所做的关于冷恒星的质量极限的
工作。
强德拉塞卡指出,不相容原理不能够阻止质量大于强德拉塞卡极限的恒星发生坍缩。
但是,根据广义相对论,这样的恒星会发生什么情况呢?这个问题被一位年轻的美国人
罗伯特·奥本海默于1939年首次解决。然而,他所获得的结果表明,用当时的望远镜去
观察不会再有任何结果。以后,因第二次世界大战的干扰,奥本海默本人非常密切地卷
入到原子弹计划中去。战后,由于大部分科学家被吸引到原子和原子核尺度的物理中去,
因而引力坍缩的问题被大部分人忘记了。但在本世纪60年代,现代技术的应
图6.1用使得天文观测范围和数量大大增加,重新激起人们对天文学和宇
宙学的大尺度问题的兴趣。奥本海默的工作被重新发现,并被一些人推广。
现在,我们从奥本海默的工作中得到一幅这样的图象:恒星的引力场改变了光线的
路径,使之和原先没有恒星情况下的路径不一样。光锥是表示光线从其顶端发出后在空
间——时间里传播的轨道。光锥在恒星表面附近稍微向内偏折,在日食时观察远处恒星
发出的光线,可以看到这种偏折现象。当该恒星收缩时,其表面的引力场变得很强,光
线向内偏折得更多,从而使得光线从恒星逃逸变得更为困难。对于在远处的观察者而言,
光线变得更黯淡更红。最后,当这恒星收缩到某一临界半径时,表面的引力场变得如此
之强,使得光锥向内偏折得这么多,以至于光线再也逃逸不出去(图6.1)。根据相对论,
没有东西会走得比光还快。这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会
被引力拉回去。也就是说,存在一个事件的集合或空间——时间区域,光或任何东西都
不可能从该区域逃逸而到达远处的观察者。现在我们将这区域称作黑洞,将其边界称作
事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合。
当你观察一个恒星坍缩并形成黑洞时,为了理解你所看到的情况,切记在相对论中
没有绝对时间。每个观测者都有自己的时间测量。由于恒星的引力场,在恒星上某人的
时间将和在远处某人的时间不同。假定在坍缩星表面有一无畏的航天员和恒星一起向内
坍缩,按照他的表,每一秒钟发一信号到一个绕着该恒星转动的空间飞船上去。在他的
表的某一时刻,譬如11点钟,恒星刚好收缩到它的临界半径,此时引力场强到没有任何
东西可以逃逸出去,他的信号再也不能传到空间飞船了。当11点到达时,他在空间飞船
中的伙伴发现,航天员发来的一串信号的时间间隔越变越长。但是这个效应在10点59分
59秒之前是非常微小的。在收到10点59分58秒和10点59分59秒发出的两个信号之间,他
们只需等待比一秒钟稍长一点的时间,然而他们必须为11点发出的信号等待无限长的时
间。按照航天员的手表,光波是在10点59分59秒和11点之间由恒星表面发出;从空间飞
船上看,那光波被散开到无限长的时间间隔里。在空间飞船上收到这一串光波的时间间
隔变得越来越长,所以恒星来的光显得越来越红、越来越淡,最后,该恒星变得如此之
朦胧,以至于从空间飞船上再也看不见它,所余下的只是空间中的一个黑洞。然而,此
恒星继续以同样的引力作用到空间飞船上,使飞船继续绕着所形成的黑洞旋转。
但是由于以下的问题,使得上述情景不是完全现实的。你离开恒星越远则引力越弱,
所以作用在这位无畏的航天员脚上的引力总比作用到他头上的大。在恒星还未收缩到临
界半径而形成事件视界之前,这力的差就已经将我们的航天员拉成意大利面条那样,甚
至将他撕裂!然而,我们相信,在宇宙中存在质量大得多的天体,譬如星系的中心区域,
它们遭受到引力坍缩而产生黑洞;一位在这样的物体上面的航天员在黑洞形成之前不会
被撕开。事实上,当他到达临界半径时,不会有任何异样的感觉,甚至在通过永不回返
的那一点时,都没注意到。但是,随着这区域继续坍缩,只要在几个钟头之内,作用到
他头上和脚上的引力之差会变得如此之大,以至于再将其撕裂。
罗杰·彭罗斯和我在1965年和1970年之间的研究指出,根据广义相对论,在黑洞中
必然存在无限大密度和空间——时间曲率的奇点。这和时间开端时的大爆炸相当类似,
只不过它是一个坍缩物体和航天员的时间终点而已。在此奇点,科学定律和我们预言将
来的能力都失效了。然而,任何留在黑洞之外的观察者,将不会受到可预见性失效的影
响,因为从奇点出发的不管是光还是任何其他信号都不能到达他那儿。这令人惊奇的事
实导致罗杰·彭罗斯提出了宇宙监督猜测,它可以被意译为:“上帝憎恶裸奇点。”换
言之,由引力坍缩所产生的奇点只能发生在像黑洞这样的地方,在那儿它被事件视界体
面地遮住而不被外界看见。严格地讲,这是所谓弱的宇宙监督猜测:它使留在黑洞外面
的观察者不致受到发生在奇点处的可预见性失效的影响,但它对那位不幸落到黑洞里的
可怜的航天员却是爱莫能助。
广义相对论方程存在一些解,这些解使得我们的航天员可能看到裸奇点。他也许能
避免撞到奇点上去,而穿过一个“虫洞”来到宇宙的另一区域。看来这给空间——时间
内的旅行提供了巨大的可能性。但是不幸的是,所有这些解似乎都是非常不稳定的;最
小的干扰,譬如一个航天员的存在就会使之改变,以至于他还没能看到此奇点,就撞上
去而结束了他的时间。换言之,奇点总是发生在他的将来,而从不会在过去。强的宇宙
监督猜测是说,在一个现实的解里,奇点总是或者整个存在于将来(如引力坍缩的奇点),
或者整个存在于过去(如大爆炸)。因为在接近裸奇点处可能旅行到过去,所以宇宙监
督猜测的某种形式的成立是大有希望的。这对科学幻想作家而言是不错的,它表明没有
任何一个人的生命曾经平安无事:有人可以回到过去,在你投胎之前杀死你的父亲或母
亲!
事件视界,也就是空间——时间中不可逃逸区域的边界,正如同围绕着黑洞的单向
膜:物体,譬如不谨慎的航天员,能通过事件视界落到黑洞里去,但是没有任何东西可
以通过事件视界而逃离黑洞。(记住事件视界是企图逃离黑洞的光的空间——时问轨道,
没有任何东西可以比光运动得更快。)人们可以将诗人但丁针对地狱入口所说的话恰到
好处地用于事件视界:“从这儿进去的人必须抛弃一切希望。”任何东西或任何人一旦
进入事件视界,就会很快地到达无限致密的区域和时间的终点。
广义相对论预言,运动的重物会导致引力波的辐射,那是以光的速度传播的空间—
—时间曲率的涟漪。引力波和电磁场的涟漪光波相类似,但是要探测到它则困难得多。
就像光一样,它带走了发射它们的物体的能量。因为任何运动中的能量都会被引力波的
辐射所带走,所以可以预料,一个大质量物体的系统最终会趋向于一种不变的状态。
(这和扔一块软木到水中的情况相当类似,起先翻上翻下折腾了好一阵,但是当涟漪将
其能量带走,就使它最终平静下来。)例如,绕着太阳公转的地球即产生引力波。其能
量损失的效应将改变地球的轨道,使之逐渐越来越接近太阳,最后撞到太阳上,以这种
方式归于最终不变的状态。在地球和太阳的情形下能量损失率非常小——大约只能点燃
一个小电热器,这意味着要用大约1干亿亿亿年地球才会和太阳相撞,没有必要立即去为
之担忧!地球轨道改变的过程极其缓慢,以至于根本观测不到。但几年以前,在称为PS
R1913+16(PSR表示“脉冲星”,一种特别的发射出无线电波规则脉冲的中子星)的系
统中观测到这一效应。此系统包含两个互相围绕着运动的中子星,由于引力波辐射,它
们的能量损失,使之相互以螺旋线轨道靠近。
在恒星引力坍缩形成黑洞时,运动会更快得多,这样能量被带走的速率就高得多。
所以不用太长的时间就会达到不变的状态。这最终的状态将会是怎样的呢?人们会以为
它将依赖于形成黑洞的恒星的所有的复杂特征——不仅仅它的质量和转动速度,而且恒
星不同部分的不同密度以及恒星内气体的复杂运动。如果黑洞就像坍缩形成它们的原先
物体那样变化多端,一般来讲,对之作任何预言都将是非常困难的。
然而,加拿大科学家外奈·伊斯雷尔(他生于柏林,在南非长大,在爱尔兰得到博
士)在1967年使黑洞研究发生了彻底的改变。他指出,根据广义相对论,非旋转的黑洞
必须是非常简单、完美的球形;其大小只依赖于它们的质量,并且任何两个这样的同质
量的黑洞必须是等同的。事实上,它们可以用爱因斯坦的特解来描述,这个解是在广义
相对论发现后不久的1917年卡尔·施瓦兹席尔德找到的。一开始,许多人(其中包括伊
斯雷尔自己)认为,既然黑洞必须是完美的球形,一个黑洞只能由一个完美球形物体坍
缩而形成。所以,任何实际的恒星——从来都不是完美的球形——只会坍缩形成一个裸
奇点。
然而,对于伊斯雷尔的结果,一些人,特别是罗杰·彭罗斯和约翰·惠勒提倡一种
不同的解释。他们论证道,牵涉恒星坍缩的快速运动表明,其释放出来的引力波使之越
来越近于球形,到它终于静态时,就变成准确的球形。按照这种观点,任何非旋转恒星,
不管其形状和内部结构如何复杂,在引力坍缩之后都将终结于一个完美的球形黑洞,其
大小只依赖于它的质量。这种观点得到进一步的计算支持,并且很快就为大家所接受。
伊斯雷尔的结果只处理了由非旋转物体形成的黑洞。1963年,新西兰人罗伊·克尔
找到了广义相对论方程的描述旋转黑洞的一族解。这些“克尔”黑洞以恒常速度旋转,
其大小与形状只依赖于它们的质量和旋转的速度。如果旋转为零,黑洞就是完美的球形,
这解就和施瓦兹席尔德解一样。如果有旋转,黑洞的赤道附近就鼓出去(正如地球或太
阳由于旋转而鼓出去一样),而旋转得越快则鼓得越多。由此人们猜测,如将伊斯雷尔
的结果推广到包括旋转体的情形,则任何旋转物体坍缩形成黑洞后,将最后终结于由克
尔解描述的一个静态。
1970年,我在剑桥的一位同事和研究生同学布兰登·卡特为证明此猜测跨出了第一
步。他指出,假定一个稳态的旋转黑洞,正如一个自旋的陀螺那样,有一个对称轴,则
返回书籍页